Modeling and Analysis of the Electrorheological Fluids (Suspension Flow) with Aligned-Structure Reformation

Article Preview

Abstract:

A new rheological model is applied to the analysis of the behavior of electrorheological (ER) fluids. A comparison of the model’s predictions with experimental data shows that the proposed model correctly predicts the shear stress behavior both quantitatively and qualitatively. The shear stress data for the aligned particles’ structure reformation can be fitted as a function of shear rate with the new model. The yield stress was found to be almost linearly dependent on the field strength, different from the predictions of the polarization model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-107

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.P. Seo, H. J. Choi, Y. Seo Polymer, 2011; 52; 5695.

Google Scholar

[2] Parathasarathy M, Klingenberg DJ, Mat. Sci. Eng. R., 1996; 17 ; 57.

Google Scholar

[3] Wen W, Huang X, Yang S, Lu K, Sheng P, Nat. Mat., 2003; 2 ; 727.

Google Scholar

[4] Choi HJ, Cho MS, Kim JW, Kim CA, Jhon MS, Appl. Phys. Lett., 2001; 78 ; 3806.

Google Scholar

[5] Fang FF, Kim JH, Choi HJ, Seo Y, J. Appl. Polym. Sci., 2007; 105 ; 1853.

Google Scholar

[6] Kim SG, Lim JY, Sung JH, Choi HJ, Seo Y, Polymer, 2007; 48 ; 6622.

Google Scholar

[7] Meheust Y, Parmar KPS, Schjelderupsen B, Fossum JO, J. Rheol., 2011; 35, 809.

Google Scholar

[8] Cho MS, Choi HJ, Jhon MS, Polymer 2005; 46 ; 11484.

Google Scholar

[9] De Kee D, Turcotte G., Chem. Eng. Commun., 1980; 6 ; 273.

Google Scholar

[10] Carreau PJ, De Kee DCR, Chhabra RP Rheology of Polymeric Systems, Carl Hanser Verlag, Munich 1997; p.42.

Google Scholar

[11] Papanastasiou TC, J. Rheol. 1987; 31; 385.

Google Scholar

[12] Seo YP, Seo Y, Langmuir 2012, 28; 3077.

Google Scholar

[13] Davis LC, Ginder JM Progress in Electrorheology, (Mavel Ka KO, Filisko FE(Eds. ) (Plenum, N.Y. 1995) p.107; Davis LC, J. Appl. Phys., 1997; 81; (1985).

Google Scholar

[14] Wen W , Huang X , Yang S, Lu K, Sheng P , Nat. Mat., 2003, 2, 727.

Google Scholar

[15] Espin M. J., Delgado A.V., Rejon L., J. Non-Newton. Fluid Mech. 2005; 125; 1.

Google Scholar

[16] Ramos-Tejada M. M., Espin M. J., Perea R., Delgado A. V., J. Non-Newtonian Fluid Mech. 2009; 159 ; 34.

DOI: 10.1016/j.jnnfm.2008.12.004

Google Scholar

[17] Tang X., Wu C., Conrad H., J. Rheol. 1995; 39; 1059.

Google Scholar