Chromogenic Windows

Article Preview

Abstract:

Chromogenic materials and devices allow the construction of glazings whose throughput of visible light and solar energy can be varied depending on the application of an electrical voltage or temperature. These glazings are of much interest for energy efficient buildings and are able to create energy efficiency along with indoor comfort. This paper outlines the basics of electrochromic and thermochromic technologies with foci on functional principles, materials, device and manufacturing technology, and selected results from research and development.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-117

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. B. Smith, C. G. Granqvist, Green Nanotechnology: Solutions for Sustainability and Energy in the Built Environment, CRC Press, Boca Raton, (2010).

Google Scholar

[2] B. Richter, D. Goldston, G. Crabtree, L. Glicksman, D. Goldstein, D. Greene, D. Kammen, M. Levine, M. Lubell, M. Savitz, D. Sperling, F. Schlachter, J. Scofield, J. Dawson, Rev. Mod. Phys. 80 (2008) S1- S107.

DOI: 10.1103/revmodphys.80.s1

Google Scholar

[3] C. M. Lampert, C. G. Granqvist, editors, Large-Area Chromogenics: Materials and Devices for Transmittance Control, SPIE Institutes for Advanced Optical Technologies, Vol. IS 4, SPIE – The International Society for Optical Engineering, Bellingham, (1990).

DOI: 10.1117/12.2283605

Google Scholar

[4] C. G. Granqvist, Crit. Rev. Solid. State Mater. Sci. 16 (1990) 291-308.

Google Scholar

[5] D. T. Gillaspie, R. C. Tenent, A. C. Dillon, J. Mater. Chem. 20 (2010) 9585-9592.

Google Scholar

[6] C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, Amsterdam, (1995).

Google Scholar

[7] C. G. Granqvist, Sol. Energy Mater. Sol. Cells 99 (2012) 1-13.

Google Scholar

[8] S. -Y. Li, G. A. Niklasson, C. G. Granqvist, Thin Solid Films 520 (2012) 3823-3828.

Google Scholar

[9] İ Bayrak Pehlivan, E. Runnerstrom, S. -Y. Li, G. A. Niklasson, D. J. Milliron, C. G. Granqvist, Appl. Phys. Lett., to be published.

Google Scholar

[10] R. Baetens, B. P. Jelle, A. Gustavsen, Sol. Energy Mater. Sol. Cells 94 (2010) 87-105.

Google Scholar

[11] B. P. Jelle, A. Hynd, A. Gustavsen, D. Arasteh, H. Goudey, R. Hart, Sol. Energy Mater. Sol. Cells, 96 (2012) 1-28.

DOI: 10.1016/j.solmat.2011.08.010

Google Scholar

[12] A. Kraft, M. Rottmann, Sol. Energy Mater Sol. Cells 93 (2009) 2088-(2092).

Google Scholar

[13] A. Azens, G. Gustavsson, R. Karmhag, C. G. Granqvist, Solid State Ionics 165 (2003) 1-5.

Google Scholar

[14] G. A. Niklasson, C. G. Granqvist, J. Mater. Chem. 17 (2007) 127-156.

Google Scholar

[15] C. G. Granqvist, Sol. Energy Mater. Sol. Cells 91 (2007) 1529-1598.

Google Scholar

[16] I. Hamberg, C. G. Granqvist, J. Appl. Phys. 60 (1986) R123-R159.

Google Scholar

[17] Z. -C. Jin, I. Hamberg, C. G. Granqvist, J. Appl. Phys. 64 (1988) 5117-5131.

Google Scholar

[18] B. Stjerna, E. Olsson, C. G. Granqvist, J. Appl. Phys. 76 (1984) 3797-3817.

Google Scholar

[19] O. Taguchi, T. Chonan, J. Jpn. Respiratory Soc. 44 (2006) 532-536.

Google Scholar

[20] G. B. Smith, G. A. Niklasson, J. S. E. M. Svensson, C. G. Granqvist, J. Appl. Phys. 59 (1986) 571-581.

Google Scholar

[21] P. C. Lansåker, J. Backholm, G. A. Niklasson, C. G. Granqvist, Thin Solid Films 518 (2009) 1225-1229.

DOI: 10.1016/j.tsf.2009.02.158

Google Scholar

[22] P. C. Lansåker, G. A. Niklasson, C. G. Granqvist, Thin Solid Films 520 (2012) 3688-3691.

DOI: 10.1016/j.tsf.2012.01.016

Google Scholar

[23] D. S. Hecht, R. B. Kaner, MRS Bull. 36 (2011) 749-755.

Google Scholar

[24] L. Hu, D. S. Hecht, G. Grüner, Chem. Rev. 110 (2010) 5790-5844.

Google Scholar

[25] A. K. Geim, K. S. Novoselov, Nature Mater. 6 (2007) 183-191.

Google Scholar

[26] S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. -J. Kim, K. S. Kim, B. Özyilmaz, J. -H. Ahn, B. -H. Hong, S. Iijima, Nature Nanotechnol. 5 (2010) 574-578.

DOI: 10.1038/nnano.2010.132

Google Scholar

[27] L. Hu, H. Wu, Y. Cui, MRS Bull. 36 (2011) 760-765.

Google Scholar

[28] J. S. E. M. Svensson, C. G. Granqvist, Appl. Phys. Lett. 49 (1986) 1566-1568.

Google Scholar

[29] J. G. H. Mathew, S. P. Sapers, M. J. Cumbo, N. A. O'Brien, R. B. Sargent, V. P. Rakhsha, R. B. Ladaherne, B. P. Hichwa, J. Non-Cryst. Solids 218 (1997) 342-346.

DOI: 10.1016/s0022-3093(97)00242-1

Google Scholar

[30] A. Subrahmanyam, C. S. Kumar, K. M. Karuppasamy, Sol. Energy Mater. Sol. Cells 91 (2007) 62-66.

Google Scholar

[31] H. Huang, J. Tian, W. K. Zhang, Y. P. Gan, X. Y. Tao, X. H. Xia, J. P. Tu, Electrochim. Acta 56 (2011) 4281-4286.

Google Scholar

[32] F. J. Morin, Phys. Rev. Lett. 3 (1959) 34-36.

Google Scholar

[33] N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, Sol. Energy Mater. Sol. Cells 93 (2009) 1685-1687.

Google Scholar

[34] G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edition, Wiley, New York, (2000).

Google Scholar

[35] Information on http: /rredc. nrel. gov/solar/spectra/am1. 5.

Google Scholar

[36] S. -Y. Li, G. A. Niklasson, C. G. Granqvist, J. Appl. Phys. 108 (2010) 063525.

Google Scholar

[37] N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, Phys. Stat. Sol. A 206 (2009) 2155-2160.

Google Scholar

[38] S. -Y. Li, G. A. Niklasson, C. G. Granqvist, J. Appl. Phys. 109 (2011) 113515.

Google Scholar

[39] H. Bai, M. B. Cortie, A. I. Maaroof, A. Dowd, C. Kealley, G. B. Smith, Nanotechnol. 20 (2009) 085607.

DOI: 10.1088/0957-4484/20/8/085607

Google Scholar

[40] S. -Y. Li, G. A. Niklasson, C. G. Granqvist, Appl. Phys. Lett. 99 (2011) 131907.

Google Scholar

[41] N. R. Mlyuka, G. A. Niklasson, C. G. Granqvist, Appl. Phys. Lett. 95 (2009) 171909.

Google Scholar

[42] J. B. Goodenough, J. Solid State Chem. 3 (1971) 490-500.

Google Scholar