In Situ CCVD Grown Graphene Transistors with Ultra-High On/Off-Current Ratio in Silicon CMOS Compatible Processing

Article Preview

Abstract:

We invented a novel method to fabricate graphene transistors on oxidized silicon wafers without the need to transfer graphene layers. By means of catalytic chemical vapor deposition (CCVD) the in-situ grown monolayer graphene field-effect transistors (MoLGFETs) and bilayer graphene transistors (BiLGFETs) are realized directly on oxidized silicon substrate, whereby the number of stacked graphene layers is determined by the selected CCVD process parameters. In-situ grown MoLGFETs exhibit the expected Dirac point together with the typical low on/off-current ratios between 16 (hole conduction) and 8 (electron conduction), respectively. In contrast, our BiLGFETs possess unipolar p-type device characteristics with an extremely high on/off-current ratio up to 1E7 exceeding previously reported values by several orders of magnitude. We explain the improved device characteristics by a combination of effects, in particular graphene-substrate interactions, hydrogen doping and Schottky-barrier effects at the source/drain contacts as well. Besides the excellent device characteristics, the complete CCVD fabrication process is silicon CMOS compatible. This will allow the usage of BiLGFETs for digital applications in a hybrid silicon CMOS environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

258-265

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Geim, K. S. Novoselov, Nature Materials 6 (2007).

Google Scholar

[2] H. Wang,Y. Wu, C. Cong, J. Shang, T. Yu, ACS Nano 4, 12 (2010).

Google Scholar

[3] M. C. Lemme, Solid State Phenomena 156-158 (2010).

Google Scholar

[4] W. A. de Heer et al., Solid State Commun. 143 (2007) 92–100.

Google Scholar

[5] C. Su, A. -Y. Lu C. -Y. Wu, Y. -T. Li, K. -K. Liu, W. Zhang, S. -Y. Lin, Z. -Y. Juang, Y. -L. Zhong, F-R Chen, L. -J. Li, ACS Nano Letters, 11, (2011) 3612-3616.

Google Scholar

[6] Ismach, C. Druzgalski, S. Penwell, A. Schartzberg, M. Zheng, A. Javey, Y. Zhang, Nano Letters, 10 (2010), 1542-1548.

DOI: 10.1021/nl9037714

Google Scholar

[7] L. G. de Arco, Y. Zhand, C. Zhou, IEEE Trans. On Nanotechnol. 8 (2009), 135.

Google Scholar

[8] Y. Miyasaka, A. Nakamura, J. Temmyo, JJAP, 50 (2011), 04DH12-1/4.

Google Scholar

[9] M. H. Rümmeli, A. Bachmatuki, A. Scott, F. Börrnert, J. H. Warner, V. Hoffman, J. -H. Lin, G. Cuniberti, B. Büchner, Nano Letters, 4 (2012), 4206-4210.

DOI: 10.1021/nn100971s

Google Scholar

[10] G. Lippert, J. Dabrowski, M. Lemme, C. Marcus, O. Seifarth, G. Lupina, Phys. Status Solidi, 11 (2011), 2619-2622.

DOI: 10.1002/pssb.201100052

Google Scholar

[11] L. Rispal, U. Schwalke, SCS Trans., (2009).

Google Scholar

[12] L. Rispal, P. J. Ginsel, U. Schwalke, ECS Trans., 33, 9 (2010), 13-19.

Google Scholar

[13] P. J. Wessely, F. Wessely, E. Birinci, K. Beckmann, B. Riedinger, U. Schwalke, Physica E, (2011) in print.

Google Scholar

[14] P. J. Wessely, F. Wessely, E. Birinci, U. Schwalke, ECS Trans., (2011) in print.

Google Scholar

[15] P. J. Ginsel, F. Wessely, E. Birinci, U. Schwalke, IEEE DTIS (2011) 10. 1109/DTIS. 2011. 5941438.

DOI: 10.1109/dtis.2011.5941438

Google Scholar

[16] P. J. Wessely, F. Wessely, E. Birinci, K. Beckmann, B. Riedinger, U. Schwalke, Electrochemical and Solid-State Letters, 15 (4) (2012) K31-K34.

DOI: 10.1149/2.019204esl

Google Scholar

[17] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri Phys. Rev. Lett. 97, (2006) 187401.

Google Scholar

[18] Calizo, W. Bao, F. Miao, C. Ning Lau, A. A. Balandin, Applied Physics Letters 91, (2007) 201904.

Google Scholar

[19] Y. Y. Wang et al., J. Phys. Chem. C 112, (2008) 10637-10640.

Google Scholar

[20] F. Schwierz, Nature Nanotechnology 5 (2010).

Google Scholar

[21] S. Kumar, N. Peltekis, K. Lee, H. -Y. Kim, G. S. Duesberg, Nanoscale Research Letters, 6: 390 (2011).

Google Scholar

[22] Y. -J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, and P. Kim, Nano Lett., 9 (2009), 3430-3434.

Google Scholar

[23] T. Filleter, K.V. Emtsev, Th. Seyller, R. Bennewitz, Appl. Phys. Lett., 93 (2008), 133117.

DOI: 10.1063/1.2993341

Google Scholar

[24] S. S. Datta, D. R. Strachan, E. J. Mele, A. T. C. Johnson, Nano Lett., 9 (2009), 7–11.

Google Scholar

[25] Y. Shi, X. Dong, P. Chen, J. Wang, L. -J. Li, Phys. ReV. B, 79 (2009), 115402.

Google Scholar

[26] T. Takahashi, H. Tokailin, T. Sagawa, Phys. ReV. B, 32 (1985), 8317-8324.

Google Scholar

[27] G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. Van den Brink, P. J. Kelly, Phys. ReV. Lett., 101 (2008), 026803.

DOI: 10.1103/physrevlett.101.026803

Google Scholar

[28] H. Hibino, H. Kageshima, M. Kotsugi, F. Maeda, F. -Z. Guo, Y. Watanabe, Phys. ReV. B, 79 (2009), 125437.

Google Scholar