Cobalt Doped ZnO Nanorods Fabricated by Chemical Bath Deposition Technique

Article Preview

Abstract:

ZnO nanorods are currently studied for variety optoelectronic applications. Typically, thin film and bulk ZnO show a strong light absorption in the ultra violet (UV) range. For devices that operate in the visible and infrared range such as optoelectronic sensors and photovoltaic cells, it is necessary to modify the absorption profile from UV to higher wavelengths in the visible region. In this study we investigate optical absorption of ZnO nanorods doped with cobalt using a modified chemical bath deposition technique. The light absorption properties of Cobalt doped ZnO nanorods were studied using Photoluminescence (PL) and Raman Spectroscopy. For doping of Cobalt ranging from 3 to 10 percentage of the total weight, the PL intensity shows a suppression of the prominent UV peak at 383 nm with increase in doping concentration. This reduction in PL intensity at 383 nm is accompanied by an increase in the PL intensity at 429 nm and 469 nm. We will discuss details of ZnO-Cobalt structures using Raman spectroscopy on cobalt doped ZnO nanorod samples of 1 -20% doping concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

280-284

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, J. Appl. Phys. 98, (2005) p.041301.

Google Scholar

[2] W. Shan, B. D. Little, A. J. Fischer, J. J. Song, B. Goldenberg, W. G. Perry, Phys. Rev. B 54, (1996) p.16369

Google Scholar

[3] W. Baiqi, S. Xudong, F. Qiang, J. Iqbal, L. Yan, F. Honggang, and Y. Dapeng, Physica E 41, (2009) p.413.

DOI: 10.1016/j.physe.2008.09.001

Google Scholar

[4] P. Hari, H. Liang, J.Seay, K.P. Roberts,Technical Proceedings of the 2011 NSTI, Nanotechnology Conference and Expo proccedings, 1, 77 (2011) p.77.

Google Scholar

[5] L. Vayssieres, Adv. Mater, Vol. 15 (2003), p.65.

Google Scholar

[6] X. Yan, G. Liu, M. Dickey and C. G. Wilson, Polymer, Vol. 45 (2005), p.8469.

Google Scholar

[7] M. Andrés-Vergés, A. Misfud, and C. J. Serna, J. Chem. Soc., Faraday Trans. 86, (1990).p.959.

Google Scholar

[8] S. Baruah, and J. Dutta, Sci. Technol. Adv. Mater. 10, (2009) p.013001.

Google Scholar

[9] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, and R. Martins, Thin Solid Films 427, (2003) p.401.

Google Scholar

[10] K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, (2001) p.988.

Google Scholar

[11] H. J. Lee, S. Y. Jeong, C. Cho, and C. Park, Appl. Phys. Lett. 81, 4020 (2002).

Google Scholar

[12] J. J. Chen, M. H. Yu, W. L. Zhou, K. Sun, and L. M. Wang, Appl. Phys. Lett. 87, (200 p.5173119) .

Google Scholar

[13] W. Baiqi, S. Xudong, F. Qiang, J. Iqbal, L. Yan, F. Honggang, and Y. Dapeng, Physica E 41, (2009) p.413.

DOI: 10.1016/j.physe.2008.09.001

Google Scholar

[14] M. Patra, K. Manzoor, M. Manoth, S. Vadera, and N. Kumar. Journal of Physics and Chemistry of Solids., 70, (2009) p.659.

Google Scholar

[15] R. Pappalardo, D. Wood, and R. Linares. Journal of Chemical Physics., 35, (1961) p.(2041)

Google Scholar

[16] B. Wang, C. Xia, J. Iqbal, N. Tang, Z. Sun, Y. Lv, and L. Wu. Solid State Sciences. 11, (2009) p.1419.

Google Scholar