Dielectric-Tuned Diamondlike Carbon Materials for an Ultrahigh-Speed Self-Aligned Graphene Channel Field Effect Transistor

Article Preview

Abstract:

The ‘DLC-GFET’, a graphene-channel field effect transistor with a diamondlike carbon (DLC) top-gate dielectric film, is presented. The DLC film was formed ‘directly’ onto the graphene channel without forming passivation interlayers using our photoemission-assisted plasma-enhanced chemical vapor deposition (PA-CVD), where the plasma was precisely controlled by significant photoemission from the sample with quite low electric power, minimizing plasma damage to the channel. The DLC-GFET exhibits clear ambipolar characteristics with a slightly positive shift of the neutral points (Dirac voltages). Relatively high transconductances were obtained as 14.6 (8.8) mS/mm in the n (p) channel modes, respectively, with a thick DLC gate dielectric of 48 nm and a long gate length of 5 μm, promising vertical scaling-down to improve the high-frequency performance. The positive shift of the Dirac voltage is due to unintentional hole doping from an oxygen species like H2O in the DLC film into the graphene channel, suggesting that a modulation-doped DLC structure with a δ-doped oxygen (nitrogen) species for the p (n) mode will overcome high access resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

270-275

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306 (2004) 666-669; S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak and A. K. Geim, Phys. Rev. Lett. 100 (2008) 016602; K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, Solid State Commun. 146 (2008) 351-355; M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer and M. Potemski, Phys. Rev. Lett. 101 (2008) 267601.

DOI: 10.1103/physrevlett.101.267601

Google Scholar

[2] F. Schwierz, Nature Nanotech. 5 (2010) 487-496.

Google Scholar

[3] Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill and P. Avouris, Science 327 (2010) 662-662.

DOI: 10.1126/science.1184289

Google Scholar

[4] M. C. Lemme, T. J. Echtermeyer, M. Baus and H. Kurz, IEEE Electron Device Lett. 28 (2007) 282-284; M. C. Lemme, T. J. Echtermeyer, M. Baus, B. N. Szafranek, J. Bolten, M. Schmidt, T. Wahlbrink and H. Kurz, Solid-State Electron. 52 (2008) 514-518; Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer and P. Avouris, Nano Lett. 9 (2009) 422-426; A. Pirkle, R. M. Wallace and L. Colombo, Appl. Phys. Lett. 95 (2009) 133106; B. Fallahazad, S. Kim, L. Colombo and E. Tutuc, Appl. Phys. Lett. 97 (2010) 123105.

DOI: 10.1109/led.2007.891668

Google Scholar

[5] S. Aisenberg and R. Chabot, J. Appl. Phys. 42 (1971) 2953-2958; J. Robertson, Mater. Sci. Eng. R 37 (2002) 129-281.

Google Scholar

[6] Y. Takakuwa, Jpn. Patent 3,642,385 (2005); Y. Takakuwa, US Patent 7,871,677 (2011); T. Takami, S. Ogawa, H. Sumi, T. Kaga, A. Saikubo, E. Ikenaga, M. Sato, M. Nihei and Y. Takakuwa, e-J. Surf. Sci. Nanotech. 7 (2009) 882-890; H. Sumi, S. Ogawa, M. Sato, A. Saikubo, E. Ikenaga, M. Nihei and Y. Takakuwa, Jpn. J. Appl. Phys. 49 (2010) 076201.

DOI: 10.1380/ejssnt.2009.882

Google Scholar

[7] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, Nature Nanotech. 3 (2008) 210-215.

DOI: 10.1038/nnano.2008.67

Google Scholar

[8] S. Takabayashi, T. Otsuji, Y. Takakuwa, S. Ogawa and M. Yang, Jpn. Patent 2012-031899 (2012)

Google Scholar