[1]
J. Mitola III, Software Radios - Survey, Critical Evaluation and Future Directions, IEEE Telesystems Conf. (1992) p.13/15-23.
DOI: 10.1109/ntc.1992.267870
Google Scholar
[2]
A.A. Abidi, The Path to the Software-Defined Radio Receiver, IEEE J. Solid-State Circuits, 42, 5 (2007) pp.954-966.
DOI: 10.1109/jssc.2007.894307
Google Scholar
[3]
H. Harada, A Feasibility Study on Software Defined Cognitive Radio Equipment, Proc. Third IEEE International Symp. on New Frontiers in Dynamic Spectrum Access Networks (2008) pp.1-12.
DOI: 10.1109/dyspan.2008.8
Google Scholar
[4]
J.F. Lu, T. Mueller, T. Mack, A. Terzis, Configurable RF Receiver Architecture, IEEE Microwave Magazine, 4, 2 (2004) pp.75-82.
DOI: 10.1109/mmw.2004.1284946
Google Scholar
[5]
L. Maurer, R. Stuhlberger, C. Wicpalek, G. Haberpeuntner, G. Hueberet, Be Flexible - Highly flexible digital front–end enhanced CMOS–based RF transceivers, IEEE Microwave Magazine, 9, 2 (2008) pp.83-96.
DOI: 10.1109/mmm.2008.915364
Google Scholar
[6]
K. Hashimoto, M. Yamaguchi, Y. Satoh, RF Filters Based on Surface-Acoustic-Wave and Film-Bulk-Acoustic-Resonator Technologies, Proc. of the European Microwave Association, 1, 1 (2005) pp.38-44.
DOI: 10.1002/0471654507.eme435
Google Scholar
[7]
R.C. Ruby, P. Bradley, Y. Oshmyansky, A. Chien, J.D. Larson III, Thin Film Bulk Acoustic Resonators (FBAR) for Wireless Applications, Proc. IEEE Ultrason. Symp. (2001) pp.813-821.
DOI: 10.1109/ultsym.2001.991846
Google Scholar
[8]
T. Nishihara, M. Iwaki, G. Endo, X. Mi, S. Taniguchi, M. Ueda, Y. Satoh, BAW/SAW/IPD Hybrid Type Duplexer with Rx Balanced Output for WCDMA Band I, Technical Digest, IEEE Microwave Symp. (2008) pp.831-834.
DOI: 10.1109/mwsym.2008.4632961
Google Scholar
[9]
M. Kadota, T. Nakao, K. Nishiyama, S. Kido, M. Kato, R. Omote, H. Yonekura, N. Takada, R. Kita, Small Surface Acoustic Wave Duplexer for Wide-Band Code-Division Multiple Access Full-Band System Having Good Temperature Characteristics, Jpn. J. Appl. Phys., 46, 5 (2007).
DOI: 10.1143/jjap.46.4714
Google Scholar
[10]
T. Komatsu, K. Hashimoto, T. Omori, M. Yamaguchi, Tunable Radio Frequency Filters Using Acoustic Wave Resonators and Variable Capacitors, Jpn. J. Appl. Phys., 49, 7 (2010) 07HD24-1~4.
DOI: 10.1143/jjap.49.07hd24
Google Scholar
[11]
W. Kester, Aperture Time, Aperture Jitter, Aperture Delay Time— Removing the Confusion, MT-007 Tutorial, Analog Devices, Inc. (2008).
Google Scholar
[12]
J. Yuan, A Charge Sampling Mixer with Embedded Filter Function for Wireless Applications, Proc. 2nd Int. Conf. Microwave and Milimeter Wave Tech. (2000) pp.315-318.
DOI: 10.1109/icmmt.2000.895684
Google Scholar
[13]
K. Muhammad, R.B. Staszewski, Direct RF Sampling Mixer with Recursive Filtering in Charge Domain, Proc. of ISCAS, I (2004) pp.577-580.
DOI: 10.1109/iscas.2004.1328260
Google Scholar
[14]
L. Elbrecht, R. Aigner, C.I. Lin, H.J. Timme, Integration of Bulk Acoustic Wave Filters: Concepts and Trends, Technical Digest, IEEE Microwave Symp., 2 (2004) p.927 – 929.
DOI: 10.1109/mwsym.2004.1335905
Google Scholar
[15]
M.A. Dubois, J.F. Carpertier, P. Vincent, C. Billard, G. Parat, C. Muller, P. Ancey, P. Corti, Monolithic Above-IC Resonator Technology for Integrated Architectures in Mobile and Wireless Communication, IEEE J. Solid State Circuits, 41, 1 (2006).
DOI: 10.1109/jssc.2005.858627
Google Scholar
[16]
C.T.Y. Nguyen, Integrated Micromechanical Circuits Fueled By Vibrating RF MEMS Technology, Proc. IEEE Ultrason. Symp. (2006) pp.953-962.
DOI: 10.1109/ultsym.2006.224
Google Scholar
[17]
T. Matsumura, M. Esashi, H. Harada, F. Thalmayr, K. Hashimoto, S. Tanaka, Selective Mode Excitation of Piezoelectric Disk-type Resonator by Electrode Pattern Definition, Proc. IEEE Ultrason. Symp. (2010) pp.979-982.
DOI: 10.1109/ultsym.2010.5935435
Google Scholar
[19]
J.D. Adam, L.E. Davis, G.F. Dionne, E.F. Shloemann, S.N. Stitzer, Ferrite Devices and Materials, IEEE Trans. Microwave Theory and Tech., 50, 3 (2002) p.721 – 737.
DOI: 10.1109/22.989957
Google Scholar
[20]
J.C. Estes, Tunable RF Band Pass Filter with Variable Resonator Coupling, Technical Digest, International Microwave Symp. (2008) pp.1035-1038.
DOI: 10.1109/mwsym.2008.4633012
Google Scholar
[21]
H.A.C. Tilmans, W. de Raedt, E. Beyne, MEMS for Wireless Communications: from RF-MEMS Components to RF-MEMS-SiP, J. Micromechanics and Microengineering, 13 (2003) pp.139-163.
DOI: 10.1088/0960-1317/13/4/323
Google Scholar
[22]
H.J. deL. Santos, G. Fischer, H.A.C. Tilmans, J.T.M. van Beek, RF MEMS for Ubiquitous Wireless Connectivity, Part II Applications, IEEE Microwave Magazine, 7, 6 (2006) pp.50-65.
DOI: 10.1109/mmw.2004.1380278
Google Scholar
[23]
B. York, BST Filters and Voltage-Activated BAWs, Workshop on Recent Advances in Reconfigurable Filters, IEEE Microwave Symp. (2010).
Google Scholar
[24]
A. v. Bezooijen, M.A. de Jongh, C. Chanlo, L.C.H. Ruijs, F. v. Straten, R. Mahmoudi, A.H.M. v. Roermund, A GSM/EDGE/WCDMA Adaptive Series-LC Matching Network Using RF-MEMS Switches, IEEE J. Solid State Circuits, 43, 10 (2008) pp.2259-2268.
DOI: 10.1109/jssc.2008.2004334
Google Scholar
[25]
A. Chamseddine, J.W. Haslett, M. Okoniewski, CMOS Silicon-on-Sapphire RF Tunable Matching Networks, EURASIP J. on Wireless Communications and Networking, 2006 (2006) pp.1-11.
DOI: 10.1155/wcn/2006/86531
Google Scholar
[26]
H. Xaio, R. Schaumann, W.R. Daash, P.K. Wong, B. Pejcinovic, A Radio-Frequency CMOS Active Inductor and Its Application in Designing High-Q Filters, IEEE Symp. on Circuit and systems (2004) pp.197-200.
DOI: 10.1109/iscas.2004.1328974
Google Scholar
[27]
S. Darfeuille, Z. Sassi, B. Barelaud, L. Billonnet, B. Jarry, H. Marie, N.T.L. Le, P. Gamandet, A Fully Differential 2 GHz Tunable Recursive Bandpass Filter on Silicon, Germany Microwave Conf. (2005) pp.102-105.
DOI: 10.1109/mwsym.2006.249768
Google Scholar
[28]
T. Omori, K. Matsuda, N. Yokoyama, K. Hashimoto, M. Yamaguchi, Suppression of Transverse Mode Responses in Ultra-Wideband SAW Resonators Fabricated on a Cu-grating/15oYX-LiNbO3 Structure, IEEE Trans. Ultrason., Ferroelec., and Freq. Contr., 54, 10 (2007).
DOI: 10.1109/tuffc.2007.487
Google Scholar
[29]
Y. Osugi, T. Yoshino, K. Suzuki, T. Hirai, Single Crystal FBAR with LiNbO3 and LiTaO3 Piezoelectric Substance Layers, Technical Digest, IEEE International Microwave Symposium (2007) pp.873-876.
DOI: 10.1109/mwsym.2007.380118
Google Scholar
[30]
M. Kadota, T. Ogami, 5. 4 GHz Lamb Wave Resonator on LiNbO3 Thin Crystal Plate and its Application, Jpn. J. Appl. Phys., 50, 7 (2011) 07HD11-1~4.
DOI: 10.7567/jjap.50.07hd11
Google Scholar
[31]
K.D. Park, M. Esashi, S. Tanaka, Wafer-level Hetero-integration Process of SAW Devices and LSI, Proc. IEEE Ultrason, Symp. (2010) pp.1486-1489.
DOI: 10.1109/ultsym.2010.5935651
Google Scholar
[32]
T. Yasue, T. Komatsu, N. Nakamura, K. Hashimoto, M. Esashi, S. Tanaka, Wideband Tunable Love Wave Filter Using Electrostatically-Actuated MEMS Variable Capacitors Integrated on Lithium Niobate, Sensors and Actuators A, (2011) [to be published].
DOI: 10.1109/transducers.2011.5969676
Google Scholar
[33]
H. Hirano, M. Esashi, S. Tanaka, T. Kimura, I.P. Koutsaroff, M. Kadota and K. Hashimoto, Integration of ferroelectric varactors on acoustic wave resonators using film transfer technique and their application to tunable RF filters, Symposium on Piezoelectric Materials and Devices (2012).
DOI: 10.1088/0960-1317/23/2/025005
Google Scholar