RF-MEMS Components and Networks for High-Performance Reconfigurable Telecommunication and Wireless Systems

Article Preview

Abstract:

MEMS (MicroElectroMechanical-Systems) technology applied to the field of Radio Frequency systems (i.e. RF-MEMS) has emerged in the last 10-15 years as a valuable and viable solution to manufacture low-cost and very high-performance passive components, like variable capacitors, inductors and micro-relays, as well as complex networks, like tunable filters, reconfigurable impedance matching networks and phase shifters, and so on. The availability of such components and their integration within RF systems (e.g. radio transceivers, radars, satellites, etc.) enables boosting the characteristics and performance of telecommunication systems, addressing for instance a significant increase of their reconfigurability. The benefits resulting from the employment of RF-MEMS technology are paramount, being some of them the reduction of hardware redundancy and power consumption, along with the operability of the same RF system according to multiple standards. After framing more in detail the whole context of RF MEMS technology, this paper will provide a brief introduction on a typical RF-MEMS technology platform. Subsequently, some relevant examples of lumped RF MEMS passive elements and complex reconfigurable networks will be reported along with their measured RF performance and characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-74

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. R. Brown, RF-MEMS switches for reconfigurable integrated circuits, IEEE Transactions on Microwave Theory and Techniques 46 (1998) 1868-1880.

DOI: 10.1109/22.734501

Google Scholar

[2] A. Malczewski, S. Eshelman, B. Pillans, J. Ehmke, C. L. Goldsmith, X-band RF MEMS phase shifters for phased array applications, IEEE Microwave and Guided Wave Letters 9 (1999) 517-519.

DOI: 10.1109/75.819417

Google Scholar

[3] M. Kaynak et al., BiCMOS embedded RF-MEMS switch for above 90 GHz applications using backside integration technique, IEEE International Electron Devices Meeting (IEDM) (2010) 36. 5. 1-36. 5. 4.

DOI: 10.1109/iedm.2010.5703488

Google Scholar

[4] K. Chen, A. Kovacs, D. Peroulis, Anti-biased RF MEMS varactor topology for 20–25 dB linearity enhancement, IEEE MTT-S International Microwave Symposium (2010) 1142-1145.

DOI: 10.1109/mwsym.2010.5517852

Google Scholar

[5] S. Aliouane, A. B. Kouki, R. Aigner, RF-MEMS switchable inductors for tunable bandwidth BAW filters, International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS) (2010) 1-6.

DOI: 10.1109/dtis.2010.5487536

Google Scholar

[6] D. J. Chung, R. G. Polcawich, J. S. Pulskamp, J. Papapolymerou, Reduced-Size Low-Voltage RF MEMS X-Band Phase Shifter Integrated on Multilayer Organic Package, IEEE Transactions on Components, Packaging and Manufacturing Technology (2012) 1-6.

DOI: 10.1109/tcpmt.2012.2184112

Google Scholar

[7] A. E. Festo, K. Folgero, K. Ullaland, K. M. Gjertsen, A six bit, 6–18 GHz, RF-MEMS impedance tuner for 50 Ω systems, European Microwave Conference (2009) 1132-1135.

DOI: 10.23919/eumc.2009.5296361

Google Scholar

[8] K. Y. Chan, S. Fouladi, R. Ramer, R. R. Mansour, RF MEMS Switchable Interdigital Bandpass Filter, IEEE Microwave and Wireless Components Letters 22 (2012) 44-46.

DOI: 10.1109/lmwc.2011.2176926

Google Scholar

[9] M. Daneshmand, R. R. Mansour, RF MEMS Satellite Switch Matrices, IEEE Microwave Magazine 12 (2011) 92-109.

DOI: 10.1109/mmm.2011.941417

Google Scholar

[10] J. Iannacci, F. Giacomozzi, S. Colpo, B. Margesin, M. Bartek, A general purpose reconfigurable MEMS-based attenuator for Radio Frequency and microwave applications, IEEE EUROCON Conference (2009)1197-1205.

DOI: 10.1109/eurcon.2009.5167788

Google Scholar

[11] H. J. de los Santos, RF MEMS circuit design for wireless communications, Artech House, (2002).

Google Scholar

[12] C. T. -C. Nguyen, Transceiver front-end architectures using vibrating micromechanical signal processors, Digest of Papers of Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (2001) 23-32.

DOI: 10.1109/smic.2001.942335

Google Scholar

[13] S. Lucyszyn, Advanced RF MEMS, Cambridge University Press, Cambridge, (2010).

Google Scholar

[14] A. L. Hartzell, M. G. da Silva, H. R. Shea, MEMS Reliability, Springer, (2011).

Google Scholar

[15] M. A. Taghvaei, P. -V. Cicek, K. Allidina, F. Nabki, M. N. El-Gamal, A MEMS-based temperature-compensated vacuum sensor for low-power monolithic integration, IEEE International Symposium on Circuits and Systems (ISCAS) (2010) 3276-3279.

DOI: 10.1109/iscas.2010.5537914

Google Scholar

[16] A. P. Malshe, Fabrication, Packaging and Integration of MEMS and Related Microsystems, Springer, (2012).

Google Scholar

[17] J. Youngkyun, H. Doh, J. Sungyong, D. S. -W. Park, J. -B. Lee, CMOS VCO & LNA implemented by air-suspended on-chip RF MEMS LC, Midwest Symposium on Circuits and Systems (MWSCAS) 1 (2004) I-373-6.

DOI: 10.1109/mwscas.2004.1354005

Google Scholar

[18] V. Ziegler, W. Gautier, A. Stehle, B. Schoenlinner, U. Prechtel, Challenges and opportunities for RF-MEMS in aeronautics and space - The EADS perspective, Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF) (2010).

DOI: 10.1109/smic.2010.5422985

Google Scholar

[19] F. Giacomozzi, V. Mulloni, S. Colpo, J. Iannacci, B. Margesin, A. Faes, A Flexible Technology Platform for the Fabrication of RF-MEMS Devices, Proceedings of the International Semiconductor Conference 1 (2011) 155-158.

DOI: 10.1109/smicnd.2011.6095744

Google Scholar

[20] F. Giacomozzi, V. Mulloni, S. Colpo, J. Iannacci, B. Margesin, A. Faes, A Flexible Fabrication Process for RF MEMS Devices, Romanian Journal of Information Science and Technology (ROMJIST) 14 (2011) 259-268.

DOI: 10.1109/smicnd.2011.6095744

Google Scholar

[21] T. Nakatani, A. T. Nguyen, T. Shimanouchi, M. Imai, S. Ueda, I. Sawaki, K. Satoh, Single crystal silicon cantilever-based RF-MEMS switches using surface processing on SOI, Proceedings of the International Conference on Micro Electro Mechanical Systems (2005).

DOI: 10.1109/memsys.2005.1453898

Google Scholar

[22] F. Solazzi, G. Resta, V. Mulloni, B. Margesin, P. Farinelli, Influence of beam geometry on the dielectric charging of RF MEMS switches, Proceedings of the Microwave Integrated Circuits Conference (EuMIC) (2011) 398-401.

Google Scholar

[23] F. Casini, P. Farinelli, G. Mannocchi, S. DiNardo, B. Margesin, G. De Angelis, R. Marcelli, O. Vendier, L. Vietzorreck, High performance RF-MEMS SP4T switches in CPW technology for space applications, Proceedings of the Microwave Conference (EuMC) (2010).

DOI: 10.1109/eumc.2006.281475

Google Scholar

[24] A. Ocera, P. Farinelli, P. Mezzanotte, R. Sorrentino, B. Margesin, F. Giacomozzi, A Novel MEMS-Tunable Hairpin Line Filter on Silicon Substrate, Proceedings of the Microwave Conference (2006) 803-806.

DOI: 10.1109/eumc.2006.281041

Google Scholar