Preparation of Protonic Conductor BaZr0.5Ce0.3Ln0.2O3-δ (Ln=Y, Sm, Gd, Dy) by Using a Solid State Reactive Sintering Method

Article Preview

Abstract:

Protonic conductors of BaZr0.5Ce0.3Ln0.2O3-δ (BZCLn532, Ln=Y, Sm, Gd, Dy) were successfully synthesized by using a cost-effective solid state reactive sintering (SSRS) method with 1 wt.% NiO was added as a sintering aid. The pellets of the BZCLn532 were obtained at sintering temperatures between 1300 - 1600 °C. The results show that the morphologies and the final relative densities of the obtained BZCLn532 pellets are influenced significantly when different sintering temperatures were applied. Densified pellets of the BZCLn532 can be prepared at sintering temperatures of 1600 °C (BaZr0.5Ce0.3Y0.2O3-δ) and 1400 °C (BaZr0.5Ce0.3Sm0.2O3-δ, BaZr0.5Ce0.3Gd0.2O3-δ and BaZr0.5Ce0.3Dy0.2O3-δ,). The conductivity results show that the BaZr0.5Ce0.3Y0.2O3-δ (BZCY532) and BaZr0.5Ce0.3Dy0.2O3-δ (BZCD532) ceramics are demonstrated to be good candidates of oxygen ion conductor and proton conductor materials for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-5

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ionics, 3 (1981) 359-363.

DOI: 10.1016/0167-2738(81)90113-2

Google Scholar

[2] H. Iwahara, H. Uchida, K. Ono, K. Ogaki, J. Electrochem. Soc., 135 (1988) 529-533.

Google Scholar

[3] D. Medvedev, V. Maragou, E. Pikalova, A. Demin, P. Tsiakaras, J. Power Sources, 221 (2013) 217-227.

DOI: 10.1016/j.jpowsour.2012.07.120

Google Scholar

[4] T.Z. Wu, Y.Y. Rao, R.R. Peng, C.R. Xia, J. Power Sources, 195 (2010) 5508-5513.

Google Scholar

[5] D. Lin, Q.H. Wang, K.P. Peng, L.L. Shaw, J. Power Sources, 205 (2012) 100-107.

Google Scholar

[6] T. Jiang, Y. Liu, Z. Wang, W. Sun, J. Qiao, K. Sun, J. Power Sources, 248 (2014) 70-76.

Google Scholar

[7] H.G. Bohn, T. Schober, J. Am. Ceram. Soc., 83 (2000) 768-772.

Google Scholar

[8] Y. Guo, R. Ran, Z. Shao, Int. J. Hydrogen Energ., 35 (2010) 5611-5620.

Google Scholar

[9] S. Tao, J.T.S. Irvine, J. Solid State Chem., 180 (2007) 3493-3503.

Google Scholar

[10] D.K. Lim, H.N. Im, S.Y. Jeon, J.Y. Park, S.J. Song, Acta Mater., 61 (2013) 1274-1283.

Google Scholar

[11] A.M. Azad, S. Subramaniam, Mater. Res. Bull., 37 (2002) 85-97.

Google Scholar

[12] H.G. Bohn, T. Schober, J. Am. Ceram. Soc., 83 (2004) 768-772.

Google Scholar

[13] M. Shirpour, R. Merkle, J. Maier, Solid State Ionics, 225 (2012) 304-307.

DOI: 10.1016/j.ssi.2012.03.026

Google Scholar

[14] D. Makovec, Z. Samardzija, D. Kolar, J. Am. Ceram. Soc., 80 (1997) 3145-3150.

Google Scholar

[15] R. Glöckner, M. Islam, T. Norby, Solid State Ionics, 122 (1999) 145-156.

Google Scholar

[16] T. Shimura, H. Tanaka, H. Matsumoto, T. Yogo, Solid State Ionics, 176 (2005) 2945-2950.

DOI: 10.1016/j.ssi.2005.09.027

Google Scholar

[17] R. Costa, N. Grünbaum, M. -H. Berger, L. Dessemond, A. Thorel, Solid State Ionics, 180 (2009) 891-895.

DOI: 10.1016/j.ssi.2009.02.018

Google Scholar

[18] S. Ricote, N. Bonanos, A. Manerbino, W.G. Coors, Int. J. Hydrogen Energ., 37 (2012) 7954-7961.

Google Scholar

[19] D.R. Clark, Nanoionic Proton Conductivity Enhancement in Solid-state Reactive Sintered BaCe0. 7Zr0. 1Y0. 1Yb0. 1O3-δ, Colorado School of Mines, (2012).

Google Scholar

[20] P. Babilo, S.M. Haile, J. Am. Ceram. Soc., 88 (2005) 2362-2368.

Google Scholar

[21] P. Babilo, T. Uda, S.M. Haile, J. Mater. Res., 22 (2007) 1322-1330.

Google Scholar

[22] P.A. Stuart, T. Unno, J.A. Kilner, S.J. Skinner, Solid State Ionics, 179 (2008) 1120-1124.

DOI: 10.1016/j.ssi.2008.01.067

Google Scholar

[23] J.H. Tong, D. Clark, L. Bernau, M. Sanders, R. O'Hayre, J. Mater. Chem., 20 (2010) 6333-6341.

Google Scholar

[24] J.H. Tong, D. Clark, L. Bernau, A. Subramaniyan, R. O'Hayre, Solid State Ionics, 181 (2010) 1486-1498.

DOI: 10.1016/j.ssi.2010.08.022

Google Scholar

[25] J.H. Tong, D. Clark, M. Hoban, R. O'Hayre, Solid State Ionics, 181 (2010) 496-503.

Google Scholar

[26] W.G. Coors, A. Manerbino, J. Membrane. Sci., 376 (2011) 50-55.

Google Scholar

[27] E. Fabbri, D. Pergolesi, E. Traversa, Chem. Soc. Rev., 39 (2010) 4355-4369.

Google Scholar

[28] E. Fabbri, A. Depifanio, E. Dibartolomeo, S. Licoccia, E. Traversa, Solid State Ionics, 179 (2008) 558-564.

DOI: 10.1016/j.ssi.2008.04.002

Google Scholar

[29] J. Lv, L. Wang, D. Lei, H. Guo, R.V. Kumar, J. Alloy. Compd., 467 (2009) 376-382.

Google Scholar

[30] J. Bu, P. Jönsson, Z. Zhao: submitted to Journal of Power Source (2014).

Google Scholar