Structural and Electrical Properties of (1-x)Pb (Zry Ti1-y)O3-xSm(Fe3+0.5, Nb5+0.5)O3 Ceramics Prepared by Conventional Solid State Synthesis and Sintered at Low Temperature

Article Preview

Abstract:

The phase structure, microstructure and electrical properties of (1-x)Pb (Zry Ti1-y)O3-xSm(Fe3+0.5, Nb5+0.5)O3 (PZT–SFN) (with x = 2 %, 41%≤ y ≤57 %) piezoelectric ceramics were prepared by the conventional solid state method, and effects of SFN and the Zr/Ti ratio content on the piezoelectric properties of PZT ceramics were mainly investigated. A stable solid solution has been formed between PZT and SFN, and a morphotropic phase boundary of PZT–SFN ceramics is identified in the range of 51% ≤ y ≤55 %. The Curie temperature of PZT–SFN ceramics decreases with increasing at Zr/Ti ratio content. A higher εr value and a lower tanδ value are demonstrated for the PZT–SFN ceramics with y = 53 %. The PZT–SFN ceramics with y = 53 % has an enhanced electrical behavior of kp ~ 61.2 %, Qm ~ 104, εr ~ 566, tanδ ~ 2.02 % and TC ~ 370 OC. As a result, PZT–SFN ceramics are promising candidate materials for the field of lead piezoelectric materials and piezoelectric device.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-17

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.Y. Ha, J.W. Choi, C.Y. Kang, D.J. Choi, H.J. Kim, S.J. Yoon, Mater. Chem. Phys. 90 (2005)396-400.

Google Scholar

[2] J.S. Cross, K. Shinozaki, T. Yoshioka, J. Tanaka, S.H. Kim, H. Morioka and K. Saito, Mater. Sci. Eng. B 173 (2010)18-20.

Google Scholar

[3] M. R. Soares, A. M. R. Senos and P. Q. Mantats, J. Europ. Ceram. Soc. 20 (2000)321-334.

Google Scholar

[4] I. Kanno, H. Kotera, K. Wasa, T. Matsunaga, T. Kamada and R. Takayama, J. Appl. Phys. 93 (2003) 4091- 4096.

Google Scholar

[5] S.K. Mishra, D. Pandey and A.R. Singh, Appl. Phys. Let. 69 (1996) 1707-1709.

Google Scholar

[6] A.P. Wilkinson, J. Xu, S. Pattanaik, J.L. Billinge, Chem. Matter, 10(11) (1998) 3611-3619.

Google Scholar

[7] W. Cao and L. Cross, Phys. Rev. B 47 (1993) 4825-4830.

Google Scholar

[8] K. Kakegawa, J. Mohri and T. Takahashi, H. Yamamura and S. Shirasaki, Sol. State. Commun. 24 (1972) 769-772.

Google Scholar

[9] Geetika and A.M. Umarji, Mater. Sci. Eng. B 167 (3) (2010) 171-176.

Google Scholar

[10] B. Woo Lee and E. Jong Lee, J. Electro. Ceram. 17 (2006) 597–602.

Google Scholar

[11] R. Rai, S. Sharma, Ceram. Internat. 30 (2004) 1295-1299.

Google Scholar

[12] W. P. Mason, and H. Jaffe, Methodes for measuring piézoélectric, Elastic, and dielectric coefficients of crystals and ceramics, Proceeding of the IRE, 928, 1954.

Google Scholar

[13] A. Boutarfaia,  Ceram. Internat. 27 (2001) 91-97.

Google Scholar

[14] K.H. Hartal, Ferroelectrics. 12 (1976) 9–19.

Google Scholar