Structural and Electrical Properties of Ca2+ Substituted Pb[(Zr0.52Ti0.48)0,98(Cr3+0.5, Ta5+0.5)0,02]0,96 P0,04 O3 Ceramics

Article Preview

Abstract:

Pb1-x Ca x [(Zr0.52Ti0.48)0,98(Cr3+0.5, Ta5+0.5)0,02]0,96 P0,04 O 3 (x = 0,00, 0.02, 0.04, 0.06) ceramics were prepared using the conventional mixed-oxide route. The resultant samples were sintered at different temperatures and subsequently characterized in terms of both microstructure and dielectric properties to study the effects of sintering behavior. X-ray diffraction analysis reveals that all specimens are a pure perovskite phase without pyrochlore phase and exhibits a phase transition from a rhombohedral phase to the coexistence of rhombohedral and tetragonal phases with an increase of sintering temperature. The grain size first increases up to x = 0.02 and then decreases. Comparing with the undoped ceramics, the dielectric properties of the Ca-doped PZT–PCTP specimens are significantly improved. The results show that the ceramics sintered at 1180 °C have optimum electrical properties for x= 0.02: a high dielectric constant (εr = 16800) at Tc, a low dissipation factor (tanδ = 0.009) and a low resistivity (ρ= 0.09 ×10+4) (Ω.cm) at 1 kHz, which indicates that the PZT–CCTP ceramics are promising for lead practical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-23

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications, John Wiley & Sons Ltd., Chichester, (2003) 500.

Google Scholar

[2] K. Uchino, Am. Ceram. Soc. Bull. 65 (1986) 647.

Google Scholar

[3] K. Kurihara, M. Kondo, Ceram. Int. 34 (2008) 695.

Google Scholar

[4] S.X. Dong, L. Yan, N.G. Wang, D. Viehland, X.N. Jiang, P. Rehrig, W. Hackenberger, Appl. Phys. Lett. 86 (2005) 053501.

DOI: 10.1063/1.1855424

Google Scholar

[5] Z.G. Ye, Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials: Synthesis, Properties and Applications, Woodhead Publishing Ltd., England, (2008).

Google Scholar

[6] Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75 (1994) 454.

Google Scholar

[7] G.H. Haertling, J. Am. Ceram. Soc. 82 (1999) 797–818.

Google Scholar

[8] B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, London (1971) 317.

Google Scholar

[9] H. Jaffe, D.A. Berlincourt, Proc. IEEE 53 (1965) 1372–1386.

Google Scholar

[10] A. Halliyal, U. Kumar, R.E. Newnham, L.E. Cross, Am. Ceram. Soc. Bull. 66 (1987) 671–676.

Google Scholar

[11] R. Yimnirun, S. Ananta, P. Laoratanakul, Mater. Sci. Eng. B 112 (2004) 79–86.

Google Scholar

[12] N. Vittayakorn, G. Rujijanagul, X. Tan, M.A. Marquardt, D.P. Cann, J. Appl. Phys. 96 (2004) 5103–5109.

Google Scholar

[13] Zhou J, Chen W, Sun H J, et al. Effect of Sintering Technology on Pmzn Piezoceramics Properties[J]. J. Wuhan University of Technology-Mater. Sci. Ed. 17 (2002) 27-29.

DOI: 10.1007/bf02852628

Google Scholar

[14] Buckner D A. Effect of Calcining on Sintering of Lead Zirconate-titanate Ceramics[J]. J. Am. Ceram. Soc. 51(3) (1972) 218-222.

Google Scholar

[15] Choi S W, Shroud T R, Jang S J. Morphotropic Phase Boundary in PbMg1/3Nb2/3-PbTiO3 System[J]. Mater. Lett. 8(6, 7) (1989) 253-255.

Google Scholar

[16] Yamashita Y. Large Electromechanical Coupling Factors in Perovskite Binary Material System[J]. J. Appl. Phys. 33(9B) (1994) 5328-5331.

DOI: 10.1143/jjap.33.5328

Google Scholar

[17] Megriche A, Troccaz M. Effects of of Excess PbO Addition on the Properties of Ferroelectric Doped PZT Ceramics[J]. Mater. Res. Bull. 33( 4) (1998) 569-574.

DOI: 10.1016/s0025-5408(98)00014-2

Google Scholar

[18] Masao Kondo, Kazuaki Kurihara. Sintering Behavior and Surface Microstructure of PbO-rich PbNi1/3Nb2/3O3-PbTiO3- PbZiO3 Ceramics[J]. Mater. Chem. Phys. 84(11) (2001) 2469-2774.

Google Scholar