Tribological Behaviour of Ceramic Hip Replacements

Article Preview

Abstract:

Since 1960, when the first hip prosthesis was introduced, up to now, several implant typologies have been proposed trying to meet the increasing clinical demands of more and more active and young patients. A substantial evolution of implant design has been occurring, both in terms of materials and geometry, basically driven by their tribological performances. Indeed, the main concern of hip implants consists in the release of wear debris, which can lead to implant loosening and failure. Thus, many studies on wear and lubrication of hip prostheses have been published in the last 15 years, mainly focused on experimental researches but also on numerical/modeling approaches. The aim of this work is to review the history of hip implants from a tribological point of view with a focus on ceramic-on-ceramic replacements, which represent the most advanced solution in terms of wear strength and chemical inertness. The main drawbacks of these implants, as the brittleness and the squeaking, are discussed and novel solutions examined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-20

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Di Puccio, L. Mattei, Bio-tribology of artificial hip joints, World Journal of Orthopaedics, In press (2014) 1-25.

Google Scholar

[2] F.F. Buechel, M.J. Pappas, Principles of human joint replacement: Design and clinical application, Springer-Verlag Berlin, Berlin, Germany, (2011).

Google Scholar

[3] A. -R. Jenabzadeh, S.J. Pearce, W.L. Walter, Total hip replacement: ceramic-on-ceramic, Semin Arthroplasty, 23 (2012) 232-40.

DOI: 10.1053/j.sart.2012.12.007

Google Scholar

[4] H. McKellop, F.W. Shen, B. Lu, P. Campbell, R. Salovey, Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements, J Orthop Res, 17 (1999) 157-67.

DOI: 10.1002/jor.1100170203

Google Scholar

[5] P. Bracco, E. Oral, Vitamin E-stabilized UHMWPE for Total Joint Implants: A Review, Clinical Orthopaedics and Related Research®, 469 (2011) 2286-93.

DOI: 10.1007/s11999-010-1717-6

Google Scholar

[6] T.M. Grupp, M. Holderied, M.A. Mulliez, R. Streller, M. Jager, W. Blomer, S. Utzschneider, Biotribology of a vitamin E-stabilized polyethylene for hip arthroplasty - Influence of artificial ageing and third-body particles on wear, Acta biomaterialia, (2014).

DOI: 10.1016/j.actbio.2014.02.052

Google Scholar

[7] http: /www. njrcentre. org. uk.

Google Scholar

[8] D. Dowson, Tribological principles of metal-on-metal hip joint design, Proc Inst Mech Eng H2 J Eng Med, 220 (2006) 161-71.

DOI: 10.1243/095441105x63255

Google Scholar

[9] Z.M. Jin, Biotribology: material design, lubrication, and wear in artificial hip joints, in: G.E. Totten (Ed. ) Handbook of lubrication and tribology. Application and maintenance, CRC Press, Taylor and Francis Group, Boca Raton, FL ; London, 2006, pp.1-24.

DOI: 10.1201/9781420003840.ch17

Google Scholar

[10] L. Mattei, F. Di Puccio, B. Piccigallo, E. Ciulli, Lubrication and wear modelling of artificial hip joints: a review, Tribol Int, 44 (2011) 532–49.

DOI: 10.1016/j.triboint.2010.06.010

Google Scholar

[11] I. Hutchings, P. Shipwa, Tribology, 2 ed., Butterworth-Heinemann Ltd, (2007).

Google Scholar

[12] C. Brockett, S. Williams, Z. Jin, G. Isaac, J. Fisher, Friction of total hip replacements with different bearings and loading conditions, J Biomed Mater Res B Appl Biomater, 81B (2007) 508-15.

DOI: 10.1002/jbm.b.30691

Google Scholar

[13] C.L. Brockett, A comparison of friction in 28 mm conventional and 55 mm resurfacing metal-on-metal hip replacements, Proceedings of the Institution of Mechanical Engineers, Part J, Journal of engineering tribology, 221 (2007) 391-8.

DOI: 10.1243/13506501jet234

Google Scholar

[14] C. Myant, P. Cann, In contact observation of model synovial fluid lubricating mechanisms, Tribol Int, 63 (2013) 97-104.

DOI: 10.1016/j.triboint.2012.04.029

Google Scholar

[15] L. Mattei, F. Di Puccio, E. Ciulli, A comparative study on wear laws for soft-on-hard hip implants using a mathematical wear model, Tribol Int, 63 (2013) 66-77.

DOI: 10.1016/j.triboint.2012.03.002

Google Scholar

[16] L. Mattei, F. Di Puccio, Wear simulation of metal-on-metal hip replacements with frictional contact, J Tribol, 135 (2013) 1-11.

DOI: 10.1115/1.4023207

Google Scholar

[17] Y. Yan, D. Dowson, A. Neville, In-situ electrochemical study of interaction of tribology and corrosion in artificial hip prosthesis simulators, J Mech Behav Biomed Mater, 18 (2013) 191-9.

DOI: 10.1016/j.jmbbm.2012.08.009

Google Scholar

[18] A. Wang, A unified theory of wear for ultra-high molecular weight polyethylene in multi-directional sliding, Wear, 248 (2001) 38-47.

DOI: 10.1016/s0043-1648(00)00522-6

Google Scholar

[19] Z. Xia, Y. -M. Kwon, S. Mehmood, C. Downing, K. Jurkschat, D.W. Murray, Characterization of metal-wear nanoparticles in pseudotumor following metal-on-metal hip resurfacing, Nanomedicine: Nanotechnology, Biology and Medicine, 7 (2011) 674-81.

DOI: 10.1016/j.nano.2011.08.002

Google Scholar

[20] www. ceramtec. com/ceramic-materials/biolox.

Google Scholar

[21] D. Kluess, P. Bergschmidt, W. Mittelmeier, R. Bader, Ceramics for joint replacement, in: P. Revell (Ed. ) Joint Replacement Technology, Woodhead Publishing, 2014, p.630.

DOI: 10.1533/9780857098474.2.152

Google Scholar

[22] J. Fisher, Z. Jin, J. Tipper, M. Stone, E. Ingham, Tribology of alternative bearings, Clin Orthop Relat Res, 453 (2006) 25-34.

DOI: 10.1097/01.blo.0000238871.07604.49

Google Scholar

[23] S. Affatato, E. Modena, A. Toni, P. Taddei, Retrieval analysis of three generations of Biolox® femoral heads: Spectroscopic and SEM characterisation, J Mech Behav Biomed Mater, 13 (2012) 118-28.

DOI: 10.1016/j.jmbbm.2012.04.003

Google Scholar

[24] G. Willmann, Ceramic femoral head retrieval data, Clin Orthop Relat Res, (2000) 22-8.

Google Scholar

[25] J. Allain, F. Roudot-Thoraval, J. Delecrin, P. Anract, H. Migaud, D. Goutallier, Revision total hip arthroplasty performed after fracture of a ceramic femoral head. A multicenter survivorship study, J Bone Joint Surg Am, 85-A (2003) 825-30.

DOI: 10.2106/00004623-200305000-00009

Google Scholar

[26] J. Nevelos, E. Ingham, C. Doyle, R. Streicher, A. Nevelos, W. Walter, J. Fisher, Microseparation of the centers of alumina-alumina artificial hip joints during simulator testing produces clinically relevant wear rates and patterns, J Arthroplasty, 15 (2000).

DOI: 10.1054/arth.2000.8100

Google Scholar

[27] W.L. Walter, G.M. Insley, W.K. Walter, M.A. Tuke, Edge loading in third generation alumina ceramic-on-ceramic bearings: stripe wear, J Arthroplasty, 19 (2004) 402-13.

DOI: 10.1016/j.arth.2003.09.018

Google Scholar

[28] P.J. Lusty, A. Watson, M.A. Tuke, W.L. Walter, W.K. Walter, B. Zicat, Wear and acetabular component orientation in third generation alumina-on-alumina ceramic bearings: an analysis of 33 retrievals [corrected], J Bone Joint Surg Br, 89 (2007).

DOI: 10.1302/0301-620x.89b9.19282

Google Scholar

[29] S. Affatato, F. Traina, A. Toni, Microseparation and stripe wear in alumina-on-alumina hip implants, Int J Artif Organs, 34 (2011) 506-12.

DOI: 10.5301/ijao.2011.8457

Google Scholar

[30] C.A. Jarrett, A.S. Ranawat, M. Bruzzone, Y.C. Blum, J.A. Rodriguez, C.S. Ranawat, The Squeaking Hip: A Phenomenon of Ceramic-on-Ceramic Total Hip Arthroplasty, The Journal of Bone & Joint Surgery, 91 (2009) 1344-9.

DOI: 10.2106/jbjs.f.00970

Google Scholar

[31] D.H. Owen, N.C. Russell, P.N. Smith, W.L. Walter, An estimation of the incidence of squeaking and revision surgery for squeaking in ceramic-on-ceramic total hip replacement: a meta-analysis and report from the Australian Orthopaedic Association National Joint Registry, The bone & joint journal, 96-B (2014).

DOI: 10.1302/0301-620x.96b2.32784

Google Scholar

[32] P.J. Firkins, J.L. Tipper, E. Ingham, M.H. Stone, R. Farrar, J. Fisher, A novel low wearing differential hardness, ceramic-on-metal hip joint prosthesis, J Biomech, 34 (2001) 1291-8.

DOI: 10.1016/s0021-9290(01)00096-3

Google Scholar

[33] S. Williams, A. Schepers, G. Isaac, C. Hardaker, E. Ingham, D. van der Jagt, A. Breckon, J. Fisher, The 2007 Otto Aufranc Award. Ceramic-on-metal hip arthroplasties: a comparative in vitro and in vivo study, Clin Orthop Relat Res, 465 (2007).

DOI: 10.1097/blo.0b013e31814da946

Google Scholar

[34] G. Pezzotti, K. Yamamoto, Artificial hip joints: The biomaterials challenge, J Mech Behav Biomed Mater, (In press).

Google Scholar

[35] Recall of Smith & Nephew R3 Metal Liners of the R3 Acetabular System, (2012).

Google Scholar

[36] M. Mazzocchi, D. Gardini, P.L. Traverso, M.G. Faga, A. Bellosi, On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part II: chemical stability and wear resistance in body environment, J Mater Sci-Mater M, 19 (2008).

DOI: 10.1007/s10856-008-3437-y

Google Scholar

[37] W. Zhang, M. Titze, B. Cappi, D.C. Wirtz, R. Telle, H. Fischer, Improved mechanical long-term reliability of hip resurfacing prostheses by using silicon nitride, J Mater Sci-Mater M, 21 (2010) 3049-57.

DOI: 10.1007/s10856-010-4144-z

Google Scholar

[38] B.J. Kang, Y.C. Ha, S.C. Hwang, Y.K. Lee, K.H. Koo, Midterm Results of Large Diameter Biolox Forte Ceramic Head on Delta Ceramic Liner Articulation in Total Hip Arthroplasty, J Arthroplasty, (2014).

DOI: 10.1016/j.arth.2014.03.003

Google Scholar

[39] J. -A. Epinette, M.T. Manley, No Differences Found in Bearing Related Hip Survivorship at 10–12 Years Follow-Up Between Patients With Ceramic on Highly Cross-Linked Polyethylene Bearings Compared to Patients With Ceramic on Ceramic Bearings, J Arthroplasty, 29 (2014).

DOI: 10.1016/j.arth.2014.02.025

Google Scholar