Nonoxide High-Melting Point Compounds as Materials for Extreme Conditions

Article Preview

Abstract:

Authors have studied the interaction between high-melting compounds from various classes, such as transition-metal carbides, borides, nitrides, and silicides, and covalent-bonded B4C, SiC, Si3N4, AlN etc. (over 160 phase diagrams), ternary B4C-SiC-MedB2, SiC-TiC-TiB2 and other eutectics, which is important for optimizing the sintering temperature, material design and prediction of properties of many materials for high temperature applications including wear, aggressive, impact and radiation conditions. A vast identified group of eutectics with number of components n ≥ 2 has reduced eutectic temperature Тeut. (in some sistems reducing reaches 1200 °C). Noted, that increasing of n suppresses grain growth, which is particularly important for developing nanostructured ceramics via pressureless sintering and for controlling the ceramic's performance. Multiphase ceramics (SiC-TiC-TiB2, B4C-SiC-MedB2, B4C-W2B5-MedB2, B4C-LnB6-MedB2, etc.) feature improved mechanical parameters and high wear and impact resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-56

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory Diborides of Zirconium and Hafnium, J. Am. Ceram. Soc., 90.

DOI: 10.1111/j.1551-2916.2007.01583.x

Google Scholar

[5] (2007) 1347-1364.

Google Scholar

[2] A. Bellosi, S. Guicciardi, V. Medri, F. Monteverde, D. Sciti, and L. Silvestroni, Processing and Properties of Ultra-Refractory CompositesBased on Zr- and Hf-Borides, in: N. Orlovskaya, M. Lugovy (Eds. ), State of the Art and Perspectives, Phys. and Astronomy, Boron Rich Solids, , Springer, 2011, pp.147-160.

DOI: 10.1007/978-90-481-9818-4_10

Google Scholar

[3] E.P. Simonenko, D.V. Sevast'yanov, N.P. Simonenko, V.G. Sevast'yanov, N.T. Kuznetsova, Promising Ultra-High Temperature Ceramic Materials for Aerospace Applications, Russian Journal of Inorganic Chemistry, 58.

DOI: 10.1134/s0036023613140039

Google Scholar

[14] 2013)1669-1693.

Google Scholar

[4] M. Ziemnicka-Sylwester, Superhard TiB2-based composites with different matrix fabricated from elemental powders by SHS-p-HIP, Adv. Sci. Technol., 77(2013)146-152.

DOI: 10.4028/www.scientific.net/ast.77.146

Google Scholar

[5] F. Monteverde, Ultra high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering, J. Alloys Compd. 428 (2007)197-205.

DOI: 10.1016/j.jallcom.2006.01.107

Google Scholar

[6] R. Orrù, G. Cao, Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication ofMonolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials, Materials 6 (2013)1566-1583.

DOI: 10.3390/ma6051566

Google Scholar

[7] S. S. Ordanyan and V. I. Unrod, Eutectics and their models, sintered composites, in systems of refractory materials, Refractories and Industrial Ceramics, 46.

DOI: 10.1007/s11148-006-0024-y

Google Scholar

[4] (2005) 276-281.

Google Scholar

[8] M. Pirani, H. Alterthum, Method for the Determination of the Melting Point of Refractory Metal. Z. Elektrochem., 29 (1923) 5-7.

Google Scholar

[9] E. Rudy and J. Progulski, A Pirani, Furnace for the Precision Determination of the Melting Temperatures of Refractory Metallic Substances, Planseeberichte für Pulvermetallurgie, 15 (1967) 13-45.

Google Scholar

[10] D. Zakarian, V. Kartuzov, E. Kartuzova, A. Khachatrian, A. Sayir, Calculation of composition in LaB6–TiB2 and LaB6–ZrB2 eutectics by means of pseudopotential method, Journal of the European Ceramic Society 31 (2011) 1305-1308.

DOI: 10.1016/j.jeurceramsoc.2011.01.023

Google Scholar

[11] D.A. Zakaryan, V.V. Kartuzov, A.V. Khachatryan, Pseudopotential method for calculating the eutectic temperature and concentration of the components of the B4C–TiB2, TiB2–SiC, and B4C–SiC systems, Powder Metallurgy and Metal Ceramics. 48 (2009).

DOI: 10.1007/s11106-010-9172-1

Google Scholar

[12] S. S. Ordan'yan, Rules for the reactions in B4C-MeIV – VIB2 systems, Refractories, 34 [5-6](1993)268-271.

DOI: 10.1007/bf01293229

Google Scholar

[13] S.S. Ordanjan, About patterns of interaction in SiC-MeB2 systems [in Russian], Journal of Applied Chemistry, 66.

Google Scholar

[11] 1993) 2439-2444.

Google Scholar

[14] S.S. Ordan'yan, S.V. Vikhman, E.N. Bulina, V.V. Smirnov, Interactions in SiC-WSi2 system [in Russian], Refractories and industrial ceramics, 2 (2007) 3-5.

Google Scholar

[15] S.S. Ordan'yan, S.V. Vikhman, S.A. Larentseva, V.V. Smirnov, Structure of the SiC-MoSi2 section in Mo-Si-C system, Refractories and industrial ceramics, 11 (2006) 2-5.

Google Scholar

[16] S.S. Ordan'yan, S.V. Vikhman, Yu.S. Nagaeva, Composite WSi2–MeVB2 materials in W–Si–MeV–B systems, Refractories and Industrial Ceramics 50.

DOI: 10.1007/s11148-009-9153-4

Google Scholar

[2] 2009) 127-130.

Google Scholar

[17] S.S. Ordan'yan, S.V. Vikhman, Yu.S. Nagaeva, Reaction of MoSi2 with niobium and tantalum diborides, Refractories and Industrial Ceramics, 52.

DOI: 10.1007/s11148-011-9414-x

Google Scholar

[4] 2011) 282-284.

Google Scholar

[18] S. S. Ordan'yan, Rules for the reactions in the systems LaB6-MeIV-VIB2, Izv. Akad. Nauk SSSR, Neorg. Mater., 24.

Google Scholar

[2] (1988) 235-238.

Google Scholar

[19] S.S. Ordan'yan, O.V. Yurchenko, S.V. Vikhman, Phase Relations in the SiC–LaB6 System, Inorganic Materials, 40.

Google Scholar

[6] 2004) 600-603.

Google Scholar

[20] S.S. Ordanyan, S.V. Vikhman, D.D. Nesmelov, A.H. Hovsepyan, Interaction in SiC-YB6 system [in Russian], Proceedings of the NAS RA: Technical Sciences, 65.

Google Scholar

[4] (2011) 355-358.

Google Scholar

[21] S.S. Ordanyan, D.D. Nesmelov, S.V. Vikhman, On interaction of silicon carbide with cerium and gadolinium hexaborides [in Russian]. Voprosi materialovedeniya, 3.

Google Scholar

[71] (2012) 38-42.

Google Scholar

[22] S.S. Ordan'yan, O.V. Yurchenko, S.V. Vikhman, Polythermic Section B4C-LaB6 in the Ternary System La-B-C, Russian Journal of Applied Chemistry, 78.

DOI: 10.1007/s11167-005-0286-z

Google Scholar

[2] 2005) 333-335.

Google Scholar

[23] S.S. Ordanyan, D.D. Nesmelov, S.V. Vikhman, Polytermic section B4C–GdB6 in Gd–B–C ternary system [in Russian]. Voprosy materialovedeniya, 3.

Google Scholar

[71] 2012) 43-46.

Google Scholar

[24] S.S. Ordan'yan, D.D. Nesmelov, S.V. Vikhman, Phase relations in the LaB6-W2B5 system, Inorganic Materials, 45.

DOI: 10.1134/s0020168509070097

Google Scholar

[7] 2009) 754-757.

Google Scholar

[25] S.S. Ordan'yan, A.N. Orekhov, S.V. Vikhman, Interaction of W2B5 with MeIV, VC carbides. Russian Journal of Non-Ferrous Metals, 53.

DOI: 10.3103/s1067821212010178

Google Scholar

[1] 2012) 91-94.

Google Scholar

[26] S.S. Ordan'yan, A.I. Dmitriev, K.T. Bizhev, E.K. Stepanenko, Interaction in B4C-MeVB2 systems, Soviet Powder Metallurgy and Metal Ceramics, 26.

DOI: 10.1007/bf00794368

Google Scholar

[10] 1987 464-467.

Google Scholar

[27] S.S. Ordan'yan, A.A. Boldin, E.V. Prilutskii, Interaction in the B4C-W2B5 System [in Russian], Russian Journal of Applied Chemistry, 73.

Google Scholar

[12] 2000) 2128-2130.

Google Scholar

[28] S.S. Ordan'yan, A.A. Boldin, S.S. Suvorov, V.V. Smirnov, Phase diagram of the W2B5-ZrB2 system, Inorganic Materials, 41.

DOI: 10.1007/s10789-005-0114-0

Google Scholar

[3] 2005) 232 – 234.

Google Scholar

[29] S.S. Ordanyan, D.D. Nesmelov, S.V. Vikhman, On structure of SiC-B4C-LaB6 system [in Russian], Refractories and industrial ceramics, 6 (2006) 2-5.

Google Scholar

[30] S.S. Ordan'yan, D.D. Nesmelov, S.V. Vikhman, The system SiC–W2B5–LaB6, Refractories and Industrial Ceramics, 50.

DOI: 10.1007/s11148-010-9221-9

Google Scholar

[5] 2009) 391-393.

Google Scholar

[31] D.D. Nesmelov, Yu.P. Udalov, S.S. Ordanyan, On structure of LaB6-B4C-W2B5 system [in Russian], Refractories and Industrial Ceramics, 9 (2009) 7-9.

Google Scholar

[32] Yu. P. Udalov, E. E. Valova, S. S. Ordan'yan, Preparation and abrasive properties of eutectic compositions in the system B4C-SiC-TiB2, Refractories and Industrial Ceramics, 36.

DOI: 10.1007/bf02227391

Google Scholar

[8] 1995) 233-234.

Google Scholar

[33] D.P. Danilovich, V.I. Rumyantsev, S.S. Ordanyan, SiC-TiC-TiB2systemasbasisforceramic-matrixmaterials [in Russian], Voprosy Materialovedeniya, 4.

Google Scholar

[60] (2009) 42-47.

Google Scholar

[34] S.S. Ordanyan, A.A. Boldin, Yu.P. Udalov, D.D. Nesmelov, On structure of system B4C-W2B5-CrB2 [in Russian], Refractories and Industrial Ceramics, 11-12 (2008) 30-34.

Google Scholar

[35] S.S. Ordanyan, D.D. Nesmelov, S.V. Vikhman, On structure of SiC-B4C-GdB6 system [in Russian], Refractories and industrial ceramics, 4-5 (2012) 13-16.

Google Scholar

[36] Yu.B. Paderno, V.N. Paderno, V.B. Filippov, Directionally Crystallized Ceramicfiber-Reinforced Boride Composites, Refractories and Industrial Ceramics, 41 [11-12] 2000 373-378.

DOI: 10.1023/a:1011334230820

Google Scholar

[37] Y.B. Paderno, V.N. Paderno, V.B. Filippov, Some Crystal Chemistry Relationships in Eutectic Cocrystallization of d and f Transition Metal Borides, Journal of Alloys and Compounds, 219 (1995) 116-118.

DOI: 10.1016/0925-8388(94)05047-3

Google Scholar

[38] G. Kysla, P. Loboda, Ceramic materials of the quasi-binary LaB6-MoB2system, Processing and Application of Ceramics, 1 [1-2] (2007) 21-25.

DOI: 10.2298/pac0702019k

Google Scholar

[39] S.S. Ordan'yan, V.I. Rumyantsev, D.D. Nesmelov, D.V. Korablev, Physicochemical basis of creating new ceramics with participation of boron-containing refractory compounds and its practical implementation, Refractories and Industrial Ceramics, 53.

DOI: 10.1007/s11148-012-9473-7

Google Scholar

[2] 2012 108-111.

Google Scholar

[40] S.S. Ordanyan, D.P. Danilovich, D.D. Nesmelov, V.I. Rumyantsev, On some ternary systems involving refractory compounds as the basis of composite ceramic-matrix materials [in Russian], Refractories and Industrial Ceramics, 7-8 (2010) 21-25.

Google Scholar

[41] W.G. Fahrenholtz, G.E. Hilmas, S.C. Zhang, S. Zhu, Pressureless Sintering of Zirconium Diboride: Particle Size and Additive Effects, J. Am. Ceram. Soc., 91.

DOI: 10.1111/j.1551-2916.2007.02169.x

Google Scholar

[5] (2008) 1398–1404.

Google Scholar

[42] L. -H. Bao, J. -X. Zhang, S. -L. Zhou, Y. -F. Wei, Preparation and Characterization of Grain Size Controlled LaB6 Polycrystalline Cathode Material, Chin. Phys. Lett., 27.

Google Scholar

[10] (2010) 107901.

Google Scholar

[43] S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Pressureless sintering of ZrB2 –SiC ceramics, J. Am. Ceram. Soc., 91.

DOI: 10.1111/j.1551-2916.2007.02006.x

Google Scholar

[1] (2008) 26–32.

Google Scholar

[44] S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Mechanical properties of sintered ZrB2–SiC ceramics, Journal of the European Ceramic Society, 31 (2011) 893–901.

DOI: 10.1016/j.jeurceramsoc.2010.11.013

Google Scholar

[45] S.S. Ordanyan, D.D. Nesmelov, Grains growth during the pressure-less sintering of refractory borides (LaB6, TiB2 and W2B5) based ceramics, submitted to Refractories and Industrial ceramics.

Google Scholar

[46] S.S. Ordan'yan, Yu.P. Zarichnyak, E.S. Bal'nova, Anomalous concentration dependences of thermal conductivity of ceramics in TiN-AlN and ZrC-ZrB2 systems with the structure of eutectics of rough conglomerate,. Russian Journal of Non-Ferrous Metals, 55.

DOI: 10.3103/s1067821214010118

Google Scholar

[1] 2014) 92-96.

Google Scholar