[1]
W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory Diborides of Zirconium and Hafnium, J. Am. Ceram. Soc., 90.
DOI: 10.1111/j.1551-2916.2007.01583.x
Google Scholar
[5]
(2007) 1347-1364.
Google Scholar
[2]
A. Bellosi, S. Guicciardi, V. Medri, F. Monteverde, D. Sciti, and L. Silvestroni, Processing and Properties of Ultra-Refractory CompositesBased on Zr- and Hf-Borides, in: N. Orlovskaya, M. Lugovy (Eds. ), State of the Art and Perspectives, Phys. and Astronomy, Boron Rich Solids, , Springer, 2011, pp.147-160.
DOI: 10.1007/978-90-481-9818-4_10
Google Scholar
[3]
E.P. Simonenko, D.V. Sevast'yanov, N.P. Simonenko, V.G. Sevast'yanov, N.T. Kuznetsova, Promising Ultra-High Temperature Ceramic Materials for Aerospace Applications, Russian Journal of Inorganic Chemistry, 58.
DOI: 10.1134/s0036023613140039
Google Scholar
[14]
2013)1669-1693.
Google Scholar
[4]
M. Ziemnicka-Sylwester, Superhard TiB2-based composites with different matrix fabricated from elemental powders by SHS-p-HIP, Adv. Sci. Technol., 77(2013)146-152.
DOI: 10.4028/www.scientific.net/ast.77.146
Google Scholar
[5]
F. Monteverde, Ultra high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering, J. Alloys Compd. 428 (2007)197-205.
DOI: 10.1016/j.jallcom.2006.01.107
Google Scholar
[6]
R. Orrù, G. Cao, Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication ofMonolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials, Materials 6 (2013)1566-1583.
DOI: 10.3390/ma6051566
Google Scholar
[7]
S. S. Ordanyan and V. I. Unrod, Eutectics and their models, sintered composites, in systems of refractory materials, Refractories and Industrial Ceramics, 46.
DOI: 10.1007/s11148-006-0024-y
Google Scholar
[4]
(2005) 276-281.
Google Scholar
[8]
M. Pirani, H. Alterthum, Method for the Determination of the Melting Point of Refractory Metal. Z. Elektrochem., 29 (1923) 5-7.
Google Scholar
[9]
E. Rudy and J. Progulski, A Pirani, Furnace for the Precision Determination of the Melting Temperatures of Refractory Metallic Substances, Planseeberichte für Pulvermetallurgie, 15 (1967) 13-45.
Google Scholar
[10]
D. Zakarian, V. Kartuzov, E. Kartuzova, A. Khachatrian, A. Sayir, Calculation of composition in LaB6–TiB2 and LaB6–ZrB2 eutectics by means of pseudopotential method, Journal of the European Ceramic Society 31 (2011) 1305-1308.
DOI: 10.1016/j.jeurceramsoc.2011.01.023
Google Scholar
[11]
D.A. Zakaryan, V.V. Kartuzov, A.V. Khachatryan, Pseudopotential method for calculating the eutectic temperature and concentration of the components of the B4C–TiB2, TiB2–SiC, and B4C–SiC systems, Powder Metallurgy and Metal Ceramics. 48 (2009).
DOI: 10.1007/s11106-010-9172-1
Google Scholar
[12]
S. S. Ordan'yan, Rules for the reactions in B4C-MeIV – VIB2 systems, Refractories, 34 [5-6](1993)268-271.
DOI: 10.1007/bf01293229
Google Scholar
[13]
S.S. Ordanjan, About patterns of interaction in SiC-MeB2 systems [in Russian], Journal of Applied Chemistry, 66.
Google Scholar
[11]
1993) 2439-2444.
Google Scholar
[14]
S.S. Ordan'yan, S.V. Vikhman, E.N. Bulina, V.V. Smirnov, Interactions in SiC-WSi2 system [in Russian], Refractories and industrial ceramics, 2 (2007) 3-5.
Google Scholar
[15]
S.S. Ordan'yan, S.V. Vikhman, S.A. Larentseva, V.V. Smirnov, Structure of the SiC-MoSi2 section in Mo-Si-C system, Refractories and industrial ceramics, 11 (2006) 2-5.
Google Scholar
[16]
S.S. Ordan'yan, S.V. Vikhman, Yu.S. Nagaeva, Composite WSi2–MeVB2 materials in W–Si–MeV–B systems, Refractories and Industrial Ceramics 50.
DOI: 10.1007/s11148-009-9153-4
Google Scholar
[2]
2009) 127-130.
Google Scholar
[17]
S.S. Ordan'yan, S.V. Vikhman, Yu.S. Nagaeva, Reaction of MoSi2 with niobium and tantalum diborides, Refractories and Industrial Ceramics, 52.
DOI: 10.1007/s11148-011-9414-x
Google Scholar
[4]
2011) 282-284.
Google Scholar
[18]
S. S. Ordan'yan, Rules for the reactions in the systems LaB6-MeIV-VIB2, Izv. Akad. Nauk SSSR, Neorg. Mater., 24.
Google Scholar
[2]
(1988) 235-238.
Google Scholar
[19]
S.S. Ordan'yan, O.V. Yurchenko, S.V. Vikhman, Phase Relations in the SiC–LaB6 System, Inorganic Materials, 40.
Google Scholar
[6]
2004) 600-603.
Google Scholar
[20]
S.S. Ordanyan, S.V. Vikhman, D.D. Nesmelov, A.H. Hovsepyan, Interaction in SiC-YB6 system [in Russian], Proceedings of the NAS RA: Technical Sciences, 65.
Google Scholar
[4]
(2011) 355-358.
Google Scholar
[21]
S.S. Ordanyan, D.D. Nesmelov, S.V. Vikhman, On interaction of silicon carbide with cerium and gadolinium hexaborides [in Russian]. Voprosi materialovedeniya, 3.
Google Scholar
[71]
(2012) 38-42.
Google Scholar
[22]
S.S. Ordan'yan, O.V. Yurchenko, S.V. Vikhman, Polythermic Section B4C-LaB6 in the Ternary System La-B-C, Russian Journal of Applied Chemistry, 78.
DOI: 10.1007/s11167-005-0286-z
Google Scholar
[2]
2005) 333-335.
Google Scholar
[23]
S.S. Ordanyan, D.D. Nesmelov, S.V. Vikhman, Polytermic section B4C–GdB6 in Gd–B–C ternary system [in Russian]. Voprosy materialovedeniya, 3.
Google Scholar
[71]
2012) 43-46.
Google Scholar
[24]
S.S. Ordan'yan, D.D. Nesmelov, S.V. Vikhman, Phase relations in the LaB6-W2B5 system, Inorganic Materials, 45.
DOI: 10.1134/s0020168509070097
Google Scholar
[7]
2009) 754-757.
Google Scholar
[25]
S.S. Ordan'yan, A.N. Orekhov, S.V. Vikhman, Interaction of W2B5 with MeIV, VC carbides. Russian Journal of Non-Ferrous Metals, 53.
DOI: 10.3103/s1067821212010178
Google Scholar
[1]
2012) 91-94.
Google Scholar
[26]
S.S. Ordan'yan, A.I. Dmitriev, K.T. Bizhev, E.K. Stepanenko, Interaction in B4C-MeVB2 systems, Soviet Powder Metallurgy and Metal Ceramics, 26.
DOI: 10.1007/bf00794368
Google Scholar
[10]
1987 464-467.
Google Scholar
[27]
S.S. Ordan'yan, A.A. Boldin, E.V. Prilutskii, Interaction in the B4C-W2B5 System [in Russian], Russian Journal of Applied Chemistry, 73.
Google Scholar
[12]
2000) 2128-2130.
Google Scholar
[28]
S.S. Ordan'yan, A.A. Boldin, S.S. Suvorov, V.V. Smirnov, Phase diagram of the W2B5-ZrB2 system, Inorganic Materials, 41.
DOI: 10.1007/s10789-005-0114-0
Google Scholar
[3]
2005) 232 – 234.
Google Scholar
[29]
S.S. Ordanyan, D.D. Nesmelov, S.V. Vikhman, On structure of SiC-B4C-LaB6 system [in Russian], Refractories and industrial ceramics, 6 (2006) 2-5.
Google Scholar
[30]
S.S. Ordan'yan, D.D. Nesmelov, S.V. Vikhman, The system SiC–W2B5–LaB6, Refractories and Industrial Ceramics, 50.
DOI: 10.1007/s11148-010-9221-9
Google Scholar
[5]
2009) 391-393.
Google Scholar
[31]
D.D. Nesmelov, Yu.P. Udalov, S.S. Ordanyan, On structure of LaB6-B4C-W2B5 system [in Russian], Refractories and Industrial Ceramics, 9 (2009) 7-9.
Google Scholar
[32]
Yu. P. Udalov, E. E. Valova, S. S. Ordan'yan, Preparation and abrasive properties of eutectic compositions in the system B4C-SiC-TiB2, Refractories and Industrial Ceramics, 36.
DOI: 10.1007/bf02227391
Google Scholar
[8]
1995) 233-234.
Google Scholar
[33]
D.P. Danilovich, V.I. Rumyantsev, S.S. Ordanyan, SiC-TiC-TiB2systemasbasisforceramic-matrixmaterials [in Russian], Voprosy Materialovedeniya, 4.
Google Scholar
[60]
(2009) 42-47.
Google Scholar
[34]
S.S. Ordanyan, A.A. Boldin, Yu.P. Udalov, D.D. Nesmelov, On structure of system B4C-W2B5-CrB2 [in Russian], Refractories and Industrial Ceramics, 11-12 (2008) 30-34.
Google Scholar
[35]
S.S. Ordanyan, D.D. Nesmelov, S.V. Vikhman, On structure of SiC-B4C-GdB6 system [in Russian], Refractories and industrial ceramics, 4-5 (2012) 13-16.
Google Scholar
[36]
Yu.B. Paderno, V.N. Paderno, V.B. Filippov, Directionally Crystallized Ceramicfiber-Reinforced Boride Composites, Refractories and Industrial Ceramics, 41 [11-12] 2000 373-378.
DOI: 10.1023/a:1011334230820
Google Scholar
[37]
Y.B. Paderno, V.N. Paderno, V.B. Filippov, Some Crystal Chemistry Relationships in Eutectic Cocrystallization of d and f Transition Metal Borides, Journal of Alloys and Compounds, 219 (1995) 116-118.
DOI: 10.1016/0925-8388(94)05047-3
Google Scholar
[38]
G. Kysla, P. Loboda, Ceramic materials of the quasi-binary LaB6-MoB2system, Processing and Application of Ceramics, 1 [1-2] (2007) 21-25.
DOI: 10.2298/pac0702019k
Google Scholar
[39]
S.S. Ordan'yan, V.I. Rumyantsev, D.D. Nesmelov, D.V. Korablev, Physicochemical basis of creating new ceramics with participation of boron-containing refractory compounds and its practical implementation, Refractories and Industrial Ceramics, 53.
DOI: 10.1007/s11148-012-9473-7
Google Scholar
[2]
2012 108-111.
Google Scholar
[40]
S.S. Ordanyan, D.P. Danilovich, D.D. Nesmelov, V.I. Rumyantsev, On some ternary systems involving refractory compounds as the basis of composite ceramic-matrix materials [in Russian], Refractories and Industrial Ceramics, 7-8 (2010) 21-25.
Google Scholar
[41]
W.G. Fahrenholtz, G.E. Hilmas, S.C. Zhang, S. Zhu, Pressureless Sintering of Zirconium Diboride: Particle Size and Additive Effects, J. Am. Ceram. Soc., 91.
DOI: 10.1111/j.1551-2916.2007.02169.x
Google Scholar
[5]
(2008) 1398–1404.
Google Scholar
[42]
L. -H. Bao, J. -X. Zhang, S. -L. Zhou, Y. -F. Wei, Preparation and Characterization of Grain Size Controlled LaB6 Polycrystalline Cathode Material, Chin. Phys. Lett., 27.
Google Scholar
[10]
(2010) 107901.
Google Scholar
[43]
S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Pressureless sintering of ZrB2 –SiC ceramics, J. Am. Ceram. Soc., 91.
DOI: 10.1111/j.1551-2916.2007.02006.x
Google Scholar
[1]
(2008) 26–32.
Google Scholar
[44]
S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Mechanical properties of sintered ZrB2–SiC ceramics, Journal of the European Ceramic Society, 31 (2011) 893–901.
DOI: 10.1016/j.jeurceramsoc.2010.11.013
Google Scholar
[45]
S.S. Ordanyan, D.D. Nesmelov, Grains growth during the pressure-less sintering of refractory borides (LaB6, TiB2 and W2B5) based ceramics, submitted to Refractories and Industrial ceramics.
Google Scholar
[46]
S.S. Ordan'yan, Yu.P. Zarichnyak, E.S. Bal'nova, Anomalous concentration dependences of thermal conductivity of ceramics in TiN-AlN and ZrC-ZrB2 systems with the structure of eutectics of rough conglomerate,. Russian Journal of Non-Ferrous Metals, 55.
DOI: 10.3103/s1067821214010118
Google Scholar
[1]
2014) 92-96.
Google Scholar