Effect of Isovalent B-Site Doping on Structural and Electrical Properties of Bismuth-Sodium-Titanate

Article Preview

Abstract:

Samples exhibiting substitution of Titanium in Bismuth-Sodium-Titanate (BNT) by isovalent Zirconium, Tin and Germanium (Bi0.5Na0.5Ti(1-x)DxO3 with D = Zr, Ge and Sn and x = 0.0025; 0.0050; 0.01; 0.02; 0.04; 0.08) were investigated with respect to microstructure, relative permittivity, loss factor and polarization. The substituents differ in mass, ionic radius and d-electron configuration. The shift of transitions observed in plots of permittivity and loss factor vs. temperature indicate the influence of the ionic radius. The occurrence of a pinched hysteresis loop at ambient temperature in the Sn-doped samples and the absence of any pinching in the hysteresis loops of Zr-and Ge-doped samples give rise to the assumption that this feature of polarization is connected to the ionic radius combined with the d10 electron configuration of Sn4+.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-50

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Takenaka, H. Nagata, Y. Hiruma, Current Developments and Prospective of Lead-Free Piezoelectric Ceramics, Jap. J. Appl. Phys. 47 (2008) 3787–801.

DOI: 10.1143/jjap.47.3787

Google Scholar

[2] J. Rödel, Wook Jo, K. Seifert, E. Anton, T. Granzow, D. Damjanovic, Perspective on the Development of Lead-free Piezoceramics, J. Am. Ceram. Soc. 92 (2009) 1153-77.

DOI: 10.1111/j.1551-2916.2009.03061.x

Google Scholar

[3] Wook Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective, J. Electroceramics, 29.

DOI: 10.1007/s10832-012-9742-3

Google Scholar

[1] (2012) 71-93.

Google Scholar

[4] S. -T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Giant Strain in Lead-Free Piezoceramics Bi0. 5Na0. 5TiO3–BaTiO3–K0. 5Na0. 5NbO3 System, Appl. Phys. Lett. 91 (2007) 112906.

DOI: 10.1063/1.2783200

Google Scholar

[5] L.A. Schmitt, J. Kling, M. Hinterstein, M. Hoelzel, Wook Jo, H. -J. Kleebe, H. Fuess, Structural investigations on lead-free Bi0. 5Na0. 5TiO3-based piezoceramics, J. Mat. Sci. 46.

DOI: 10.1007/s10853-011-5427-6

Google Scholar

[12] (2011) 4368–4376.

Google Scholar

[6] G. Smolenskii, V. Isupov, A. Agranivyskaya, N. Krainik, New ferroelectrics of complex composition, IV. Soviet Physics Solid State 2 (1961) 2651-4.

Google Scholar

[7] Y. Watanabe, Y. Hiruma, H. Nagata, T. Takenaka, Phase transition temperatures and electrical properties of divalent ions (Ca2+, Sr2+ and Ba2+) substituted (Bi1/2Na1/2)TiO3 ceramics, Ceram. Int. 34 (2008) 761-64.

DOI: 10.1016/j.ceramint.2007.09.023

Google Scholar

[8] W. Krauss, D. Schütz, F. Mautner, A. Feteira, K. Reichmann, Piezoelectric properties and phase transition temperatures of the solid solution of (1−x)(Bi0. 5Na0. 5)TiO3–xSrTiO3, J. Europ. Ceram. Soc. 30 (2010) 1827-32.

DOI: 10.1016/j.jeurceramsoc.2010.02.001

Google Scholar

[9] Y. Hiruma, Y. Watanabe, H. Nagata, T. Takenaka, Phase transition temperatures of divalent and trivalent ions substituted (Bi1/2Na1/2)TiO3 ceramics, Key Engineering Materials 350 (2007) 93-96.

DOI: 10.1016/j.ceramint.2007.09.023

Google Scholar

[10] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32.

DOI: 10.1107/s0567739476001551

Google Scholar

[5] (1976) 751–767.

Google Scholar

[11] P. Jaiban, A. Rachakom, S. Jiansirisomboon, and A. Watcharapasorn, Effects of Sintering Temperatures on Preparation of BNZ Ceramic, J. Microsc. Soc. Thail. 4.

Google Scholar

[1] (2011) 20–23.

Google Scholar

[12] P. Jaiban, A. Rachakom, S. Jiansirisomboon, and A. Watcharapasorn, Influences of phase transition and microstructure on dielectric properties of Bi0. 5Na0. 5Zr1-xTixO3 ceramics, Nanoscale Res. Lett. 7 (2012) 45.

DOI: 10.1186/1556-276x-7-45

Google Scholar

[13] A. Rachakom, P. Jaiban, S. Jiansirisomboon, and A. Watcharapasorn, Crystal structure and electrical properties of bismuth sodium titanate zirconate ceramics, Nanoscale Res. Lett. 7 (2012) 57.

DOI: 10.1186/1556-276x-7-57

Google Scholar

[14] B. K. Barick, R. N. P. Choudhary, and D. K. Pradhan, Dielectric and impedance spectroscopy of zirconium modified (Na0. 5Bi0. 5)TiO3 ceramics, Ceram. Int. 39 (2013) 5695–5704.

DOI: 10.1016/j.ceramint.2012.12.087

Google Scholar

[15] Enyew Amare Zereffa, A.V. Prasadarao, Microstructure, Phase Transition Temperature and Electrical Properties of Pure and Tin Modified (Bi0. 5Na0. 5)0. 94Ba0. 06TiO3 Lead Free Ferroelectric Ceramics, J. Basic. Appl. Sci. Res. 2 (2012) 7516-7525.

Google Scholar

[16] J. -S. Lee, K. -N. Pham, H. -S. Han, H. -B. Lee, V. D. Ngoc Tran, Strain enhancement of lead-free Bi1/2(Na0. 82K0. 18)1/2TiO3 ceramics by Sn doping, J. Korean Phys. Soc, 60 (2012) 212-15.

DOI: 10.3938/jkps.60.212

Google Scholar

[17] DIFFRAC plus TOPAS 3. 0, BRUKER AXS GmbH, Karlsruhe, (2006).

Google Scholar

[18] G.O. Thomas, P.A. Thomas, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0. 5Bi0. 5TiO3Acta Cryst. B58 (2002) 168-178.

Google Scholar

[19] T. Takenaka, K. Maruyama, K. Sakata, Bi1/2Na1/2TiO3–BaTiO3 System for Lead-Free Piezoelectric Ceramics, Jap. J. Appl. Phys. 30 (1991) 2236-39.

Google Scholar

[20] T. Takenaka, H. Nagata, and Y. Hiruma, Phase Transition Temperatures and Piezoelectric Properties of (BiNa0. 5)TiO3- and (Bi0. 5K0. 5)TiO3-Based Bismuth Perovskite Lead-Free Ferroelectric Ceramics, " IEEE TUFC 56 (2009) 1595–1612.

DOI: 10.1016/j.ceramint.2007.10.023

Google Scholar