Electromechanical Properties and Microstructure of Undoped K0.5Na0.5NbO3 Ceramics and KNbO3-NaNbO3 Crystals

Article Preview

Abstract:

K0.5Na0.5NbO3 (KNN) was manufactured by spark plasma sintering (SPS), which is a fast sintering method allowing to control the grain growth. Different samples of KNN are sintered with SPS at 920°C under 50 MPa for 5 minutes. High densities over than 97% are achieved. In order to make domain engineering, KNN crystals are grown by floating zone method. Stable molten zone is reached when oxygen or nitrogen gas flux is used, leading up to 50 mm length of crystals. High electromechanical coupling factor kt about 46 %, kp around 45 % and ε33S/ε0 of 253 are achieved for KNN ceramics poled at optimum electric field about 3 kV / mm. KNN crystal boule exhibits kt about 40 % against 34 % for KNN ceramic, both poled at 1 kV / mm. These results are promising to replace PZT for transducers applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-32

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] European Union, Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment, Off. J. Eur. Union 46 (L37) (2003) 19–23.

Google Scholar

[2] H. Birol, D. Damjanovic, N. Setter, Preparation and characterization of KNbO3 ceramics, J. Am. Ceram. Soc. 88 (2005) 1754–1759.

DOI: 10.1111/j.1551-2916.2005.00347.x

Google Scholar

[3] R. E. Jaeger, L. Egerton, Hot pressing of potassium-sodium niobates, J. Am. Ceram. Soc. 45(1962) 209–213.

DOI: 10.1111/j.1151-2916.1962.tb11127.x

Google Scholar

[4] C-R. Zhou, X-Y. Liu, Z-W. Li, C-L. Yuan, Effect of substitution of titanium by magnesium and niobium on structure and piezoelectric properties in (Bi1/2Na1/2)TiO3 ceramics, Bull. Mat. Sci. 32 (2009) 99–102.

DOI: 10.1007/s12034-009-0015-y

Google Scholar

[5] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics, Nature 432 (2004) 84–87.

DOI: 10.1038/nature03028

Google Scholar

[6] Y.H. Lee, J.H. Cho, B.I. Kim, D.K. Choi, Piezoelectric properties and densification based on control of volatile mass of potassium and sodium in (K0. 5Na0. 5)NbO3 ceramics, Jpn. J. Appl. Phys. 47 (2008) 4620–4622.

DOI: 10.1143/jjap.47.4620

Google Scholar

[7] M. Bah, F. Giovannelli, F. Schoenstein, G. Feuillard, E. Le–Clezio, I. Monot–Laffez, High electromechanical performance with spark plasma sintering of undoped K0. 5Na0. 5NbO3 ceramics, Ceram. Int. 40 (2014) 7473–7480.

DOI: 10.1016/j.ceramint.2013.12.097

Google Scholar

[8] S. Grasso, Y. Sakka, G. Maizza, Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008, Sci. Technol. Adv. Mater. 10 (2009) 053001-1–053001-24.

DOI: 10.1088/1468-6996/10/5/053001

Google Scholar

[9] B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric ceramics, Academic press, London, (1971).

Google Scholar

[10] M. Prakasam, P. Veber, O. Viraphong, L. Etienne, M. Lahaye, S. Pechev, E. lebraud, K. Shimamura, M. Maglione, Growth and characterizations of lead-free ferroelectric KNN-based crystals, C. R. Phys. 14 (2013) 133–140.

DOI: 10.1016/j.crhy.2012.10.002

Google Scholar

[11] K. Chen, G. Xu, D. Yang, X. Wang, J. Li, Dielectric and piezoelectric properties of lead-free 0. 95(K0. 5Na0. 5)NbO3 – 0. 05LiNbO3 crystals grown by the Bridgman method, J. Appl. Phys. 101 (2007) 044103-1–044103-4.

DOI: 10.1063/1.2562464

Google Scholar

[12] R. Krimholtz, D.A. Leedom, G.L. Matthaei, New equivalent circuits for elementary piezoelectric transducers, Electron. Lett. 6 (1970) 398–399.

DOI: 10.1049/el:19700280

Google Scholar

[13] L.P. Tran-Huu-Hue, F. Levassort, N. Felix, D. Damjanovic, W. Wolny, M. Lethiecq, Comparison of several methods to characterise the high frequency behaviour of piezoelectric ceramics for transducer applications, Ultrasonics 38 (2000) 219–223.

DOI: 10.1016/s0041-624x(99)00059-1

Google Scholar

[14] S. Zhang, E.F. Alberta, R.E. Eitel, C.A. Randall, T.R. Shrout, Elastic, piezoelectric, and dielectric characterization of modified BiScO3–PbTiO3 ceramics, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 (2005) 2131–2139.

DOI: 10.1109/tuffc.2005.1561684

Google Scholar

[15] J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, Ferroelectric and piezoelectric properties of fined-grained Na0. 5K0. 5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering, J. Am. Ceram. Soc. 89 (2006) 706–709.

DOI: 10.1111/j.1551-2916.2005.00743.x

Google Scholar

[16] G. Feuillard, V. Loyau, L.P. Tran Huu Hue, T. Wurlitzer, E. Ringgaard, W. Wolny, B. Malic, M. Kosec, A. Barzegar, D. Damjanovic, M. Lethiec, Comparative performances of new KNN lead-free piezoelectric materials and classical lead-based ceramics for ultrasonic transducer applications, Ultrasonics, 2003 IEEE Symposium on. 2 (2003).

DOI: 10.1109/ultsym.2003.1293308

Google Scholar

[17] A. Reisman, F. Holtzberg, Phase Equilibria in the System K2CO3-Nb2O5 by the Method of Differential Thermal Analysis, J. Am. Chem. Soc. 77 (1955) 2115–2118.

Google Scholar

[18] A. Reisman, F. Holtzberg, E. Banks, Reactions of the group VB pentoxides with alkali oxides and carbonates. VII. Heterogeneous equilibria in the system Na2O or Na2CO3-Nb2O5, J. Am. Chem. Soc. 80 (1958) 37–42.

DOI: 10.1021/ja01534a011

Google Scholar