[1]
G. Catalan, J.F. Scott, Physics and Applications of Bismuth Ferrite, Adv. Mater. 21 (2009) 2463-2485.
DOI: 10.1002/adma.200802849
Google Scholar
[2]
T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S. -W. Cheong, Switchable ferroelectric diode and photovoltaic effect in BiFeO3, Science 324 (2009) 63-66.
DOI: 10.1126/science.1168636
Google Scholar
[3]
A.R. Damodaran, S. Lee, J. Karthik, S. MacLaren, L.W. Martin, Temperature and thickness evolution and epitaxial breakdown in highly strained BiFeO3 thin films, Phys. Rev. B 85 (2012) 024113/1-024113/9.
DOI: 10.1103/physrevb.85.024113
Google Scholar
[4]
W.J. Maeng, J.Y. Son, Highly (111)-oriented multiferroic BiFeO3 thin film on a glass substrate, J. Cryst. Growth 367 (2013) 24-26.
DOI: 10.1016/j.jcrysgro.2013.01.012
Google Scholar
[5]
R. Guo, L. You, M. Motapothula, Z. Zhang, M.B.H. Breese, L. Chen, D. Wu, J. Wang, Influence of target composition and deposition temperature on the domain structure of BiFeO3 thin films, AIP Adv. 2 (2012) 042104/1.
DOI: 10.1063/1.4757938
Google Scholar
[6]
R. Comes, M. Gu, M. Khokhlov, H. Liu, J. Lu, S.A. Wolf, Electron molecular beam epitaxy: Layer-by-layer growth of complex oxides via pulsed electron-beam deposition, J. Appl. Phys. 113 (2013) 023303/1-023303/7.
DOI: 10.1063/1.4774238
Google Scholar
[7]
S. Nakashima, H. Fujisawa, Y. Tsujita, S. Seto, M. Kobune, M. Shimizu, Structural and ferroelectric properties of domain-structure-controlled BiFeO3 thin films prepared by dual-ion-beam sputtering, Jap. J. Appl. Phys. 51 (2012) 09LB02/1-09LB02/5.
DOI: 10.1143/jjap.51.09lb02
Google Scholar
[8]
J. Wu, J. Wang, D. Xiao, J. Zhu, A Method to Improve Electrical Properties of BiFeO3 Thin Films, ACS Appl. Mater. Interfaces 4 (2012) 1182-1185.
DOI: 10.1021/am300236j
Google Scholar
[9]
Das, Rajasree; Mandal, K. Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3, J. Magn. Magnetic Mater. 324 (2012) 1913-(1918).
DOI: 10.1016/j.jmmm.2012.01.022
Google Scholar
[10]
L. Luo, W. Luo, G. Yuan, W. Wei, X. Yuan, H. Zhang, K. Shen, M. Xu, Q. Xu, The origin of enhanced room temperature ferromagnetism in Ba doped BiFeO3, J. Supercond. Novel Magn. 26 (2013) 3309-3313.
DOI: 10.1007/s10948-013-2176-6
Google Scholar
[11]
K. Sardar, J. Hong, G. Catalan, P. K. Biswas,M. R. Lees, R. I. Walton, J. F. Scott, S. A T Redfern, Structural, spectroscopic, magnetic and electrical characterization of Ca-doped polycrystalline bismuth ferrite, Bi1-xCaxFeO3-x/2 (x ≤ 0. 1), J. Phys.: Condens. Matter 24 (2012).
DOI: 10.1088/0953-8984/24/4/045905
Google Scholar
[12]
B. Bhushan, D. Das, A. Priyam, N. Y. Vasanthacharya, S. Kumar, Enhancing the magnetic characteristics of BiFeO3 nanoparticles by Ca, Ba co-doping, Mater. Chem. Phys. 135 (2012) 144-149.
DOI: 10.1016/j.matchemphys.2012.04.037
Google Scholar
[13]
A. Chaudhuri, K. Mandal, Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped bismuth ferrite, J. Magn. Magnetic Mater. 353 (2014), 57-64.
DOI: 10.1016/j.jmmm.2013.09.049
Google Scholar
[14]
M. Vagadia, A. Ravalia, P. S. Ashish, R. J. Choudhary, D.M. Phase, D. G. Kuberkar, Improvement in resistive switching of Ba-doped BiFeO3 films, Appl. Phys. Lett. 103 (2013) 033504/1-033504/5.
DOI: 10.1063/1.4813551
Google Scholar
[15]
B. Yu, M. Li, J. Wang, Z. Hu, X. Liu, Y. Zhu, X. Zhao, Dependence of magnetic properties on the Fe2+ ion in Ba-doped BiFeO3 multiferroic films, Thin Solid Films 520 (2012) 4089-4091.
DOI: 10.1016/j.tsf.2012.01.036
Google Scholar
[16]
Y. Wang, J. Li, J. Chen, Y. Deng, Ba and Ti co-doped BiFeO3 thin films via a modified chemical route with synchronous improvement in ferroelectric and magnetic behaviors, J. Appl. Phys. 113 (2013) 103904/1-103904/5.
DOI: 10.1063/1.4794814
Google Scholar
[17]
M.K. Singh, Y. Yang, C.G. Takoudis, A. Tatarenko, G. Srinivasan, P. Kharel, G. Lawes, Multiferroic BiFeO3 thin films for multifunctional devices, J. Nanosci. Nanotechnol. 10 (2010) 6195-6199.
DOI: 10.1166/jnn.2010.2598
Google Scholar
[18]
H. Funakubo, S. Yasui, T. Yamada, M. Ishikawa, MOCVD growth of BiFeO3-based ferroelectric films and their characterization Mater. Integration 22 (2009) 25-31.
Google Scholar
[19]
M.S. Kartavtseva, O. Yu. Gorbenko, A.R. Kaul, T.V. Murzina, S.A. Savinov, A. Barthelemy, BiFeO3 thin films prepared using metalorganic chemical vapor deposition, Thin Solid Films 515 (2007) 6416-6421.
DOI: 10.1016/j.tsf.2006.11.133
Google Scholar
[20]
J. Thery, C. Dubourdieu, T. Baron, C. Ternon, H. Roussel, F. Pierre, MOCVD of BiFeO3 thin films on SrTiO3 Chem. Vap. Deposition 13 (2007) 232-238.
DOI: 10.1002/cvde.200606571
Google Scholar
[21]
G. G. Condorelli, M. R. Catalano, E. Smecca, R. Lo Nigro, G. Malandrino, Piezoelectric domains in BiFeO3 films grown via MOCVD: Structure/property relationship, Surf. Coat. Technol. 230 (2013) 168–173.
DOI: 10.1016/j.surfcoat.2013.06.081
Google Scholar
[22]
D. Scillato, N. Licciardello, M. R. Catalano, G. G. Condorelli, R. Lo Nigro, G. Malandrino, BiFeO3 Films Doped in the A or B Sites: Effects on the Structural and Morphological Properties, J. Nanosci. Nanotechnol. 11, (2011) 8221–8225.
DOI: 10.1166/jnn.2011.5048
Google Scholar
[23]
G. Malandrino, F. Castelli, I.L. Fragala, A novel route to the second-generation alkaline-earth metal precursors for metal-organic chemical vapor deposition: one-step synthesis of M(hfa)2·tetraglyme (M = Ba, Sr, Ca and Hhfa = 1, 1, 1, 5, 5, 5-hexafluoro-2, 4-pentanedione), Inorg. Chim. Acta 224 (1994).
DOI: 10.1016/0020-1693(94)04123-7
Google Scholar
[24]
G. Malandrino, L. M. S. Perdicaro, G. Condorelli, I. L. Fragalà, A. Cassinese, M. Barra Synthesis and characterization of La2-xBaxCuO4+d thin film through a simple MOCVD approach, J. Mater. Chem., 15 (2005) 4718-4722.
DOI: 10.1039/b510879a
Google Scholar
[25]
G. G. Condorelli, G. Malandrino, I.L. Fragala', Engineering of molecular architectures of beta-diketonate precursors toward new advanced materials, Coord. Chem. Rev. 251 (2007) (1931).
DOI: 10.1016/j.ccr.2007.04.016
Google Scholar
[26]
R. Lo Nigro, G. Malandrino, R.G. Toro, M. Losurdo, G. Bruno, I. L. Fragalà Recent advances in characterization of CaCu3Ti4O12 thin films by spectroscopic ellipsometric metrology, J. Am. Chem. Soc. 127 ( 2005) 13772-13773.
DOI: 10.1021/ja0541229
Google Scholar
[27]
R. Lo Nigro, R. G. Toro, G. Malandrino, I.L. Fragala, M. Losurdo, M.M. Giangregorio, G. Bruno, V. Raineri, P. Fiorenza, Calcium copper-titanate thin film growth: Tailoring of the operational conditions through nanocharacterization and substrate nature effects, J. Phys. Chem. B 110 (2006).
DOI: 10.1021/jp062559c
Google Scholar
[28]
M. R. Catalano, R. G. Toro, A. Gulino, Graziella Malandrino, Perovskite LaCoO3 thin films on single crystal substrates: MOCVD growth and characterization, Surf. Coat. Technol. 230 (2013) 174-179.
DOI: 10.1016/j.surfcoat.2013.06.068
Google Scholar