Amorphous Alumina Coatings on Glass Bottles Using Direct Liquid Injection MOCVD for Packaging Applications

Article Preview

Abstract:

In the field of packaging, coatings are commonly applied on containers to avoid interactions between them and their content. For glass bottles, application of a thin film prevents interactions with the phase in contact and consequently the alteration of surface properties of the latter. In this article, we propose an innovative way to apply amorphous alumina coatings on glass bottles by metalorganic chemical vapor deposition from aluminum tri-isopropoxide. A numerical model, using the Computational Fluid Dynamics code FLUENT, has been developed to calculate local profiles of gas flow, temperature, concentration and deposition rates into the reactor. The sub-micrometric alumina films have been deposited at reduced pressure between 480°C and 670°C. Uniform thickness profiles have been determined on cross sections over the length of the bottle and have been successfully simulated. Strongly improved hydrolytic resistance with regard to the uncoated bottles reveals the excellent performance of the films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.H. Kuo, B. -Y. Cheung, R. -J. Wu, Thin Solid Films 398–399 (2001) 35.

Google Scholar

[2] L. Wu, J. Wu, L. Zhao, C. Jiang, Ceram. Int. 33 (2007) 747.

Google Scholar

[3] M. Voigt, M. Sokolowski, Mater. Sci. Eng., B, Solid-State Mater. Adv. Technol. 109 (2004) 99.

Google Scholar

[4] R. M'Saoubi, S. Ruppi, CIRP Annals – Manufacturing Technology 58 (2009) 57.

Google Scholar

[5] K. Haas-Santo, M. Fichtner, K. Schubert, Appl. Catal. A General 220 (2001) 79.

Google Scholar

[6] J. Masalski, J. Gluszek, J. Zabrzeski, K. Nitsch, P. Gluszek, Thin Solid Films 349 (1999) 186.

DOI: 10.1016/s0040-6090(99)00230-8

Google Scholar

[7] R. Emmerich, B. Enders, H. Martin, F. Stippich, G.K. Wolf, P.E. Andersen, J. Kudelha, P. Lukac, H. Hasuyama, Y. Shima, Surf. Coat. Technol. 89 (1997) 47.

DOI: 10.1016/s0257-8972(96)02901-5

Google Scholar

[8] C.F. Stuller, P.J. Kelly, N.J. Copeland, Surf. Coat. Tech. 241 (2014) 130-137.

Google Scholar

[9] T. Hirvikorpi, R. Laine, M. Vähä-Nissi, V. Kilpi, E. Salo, W. -M. Li, S. Lindfors, J. Vartiainen, E. Kenttä, J. Nikkola, A. Harlin, J. Kostamo, Thin Solid Films 550 (2014) 164.

DOI: 10.1016/j.tsf.2013.10.148

Google Scholar

[10] M.D. Groner, F.H. Fabreguette, J.W. Elam, S.M. George Chem. Mater. 16 (2004) 639.

Google Scholar

[11] M. -M. Sovar, D. Samélor, A.N. Gleizes, C. Vahlas, Surf. Coat. Tech. 201 (2007) 9159.

Google Scholar

[12] A.N. Gleizes, M. -M. Sovar, D. Samélor, C. Vahlas Adv. Sci. Tech. 45 (2006) 1184.

Google Scholar

[13] S.K. Soni, D. Samélor, B.W. Sheldon, C. Vahlas, A.N. Gleizes, Electrochem. Soc. 25, 8 (2009) 1309.

Google Scholar

[14] H. Vergnes, D. Samélor, A.N. Gleizes, C. Vahlas, B. Caussat, Chem. Vap. Dep. 17 (2011) 181.

DOI: 10.1002/cvde.201004301

Google Scholar

[15] S. Krumdieck, S. Davies, C. M. Bishop, T. Kemmitt, J.V. Kennedyn Surf. Coat. Tech. 230 (2013) 208.

Google Scholar

[16] M. Manin, S. Thollon, F. Emieux, G. Berthome, M. Pons, H. Guillon, Surf. Coat. Tech 200 (2005) 1424.

DOI: 10.1016/j.surfcoat.2005.08.052

Google Scholar

[17] J. Mungkalasiri, L. Bedel, F. Emieux, J. Doré, F.N.R. Renaud, F. Maury, Surf. Coat. Tech. 204 (2009) 887.

DOI: 10.1016/j.surfcoat.2009.07.015

Google Scholar

[18] N.Y. Turova, V.A. Kozunov, A.I. Yanovskii, N.G. Bokii, Y.T. Struchkov, B. L. Tarnopol'skii, J. Inorg. Nucl. Chem. 41 (1979) 5.

Google Scholar

[19] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, second ed., John Wiley & Sons, (2007).

Google Scholar

[20] European Pharmacopeia 5. 0, 3. 2. 1. Glass containers for pharmaceutical use.

Google Scholar