[1]
R. Dupree, I. Farnan, A.J. Forty, S. El-Mashri, L. Bottyan, A MAS NMR study of the structure of amorphous alumina films, J. Phys. Colloques 46 (1985) C8 113-117.
DOI: 10.1051/jphyscol:1985814
Google Scholar
[2]
I. Farnan, R. Dupree, Y. Jeong, G.E. Thompson, G.C. Wood, A.J. Forty, Structural Chemistry of Anodic Alumina, Thin Solid Films 173 (1989) 209-213.
DOI: 10.1016/0040-6090(89)90136-3
Google Scholar
[3]
I. Farnan, R. Dupree, A.J. Forty, Y.S. Jeong, G.E. Thompson, G.C. Wood, Structural information about amorphous anodic alumina from 27Al MAS NMR, Phil. Mag. Lett. 59 (1989) 189-195.
DOI: 10.1080/09500838908206342
Google Scholar
[4]
R.C.T. Slade, J.C. Southern, I.M. Thompson, 27Al Nuclear Magnetic Resonance Spectroscopy Investigation of Thermal Transformation Sequences of Alumina Hydrates. Part 1. - Gibbsite, gamma-Al(OH)3, J. Mater. Chem. 1 (1991) 563-568.
DOI: 10.1039/jm9910100563
Google Scholar
[5]
R.H. Meinhold, R.C.T. Slade, R.H. Newman, High Field MAS NMR, with Simulations of the Effects of Disorder on Lineshape, Applied to Thermal Transformations of Aluminas Hydrates, Appl. Magn. Reson. 4 (1993) 121-140.
DOI: 10.1007/bf03162559
Google Scholar
[6]
F.R. Chen, J.G. Davis, J.J. Fripiat, Aluminum Coordination and Lewis Acidity in Transition Aluminas, J. Catal. 133 (1992) 263-278.
DOI: 10.1016/0021-9517(92)90239-e
Google Scholar
[7]
G. Kunath-Fandrei, T.J. Bastow, J.S. Hall, C. Jäger, M.E. Smith, Quantification of Aluminum Coordinations in Amorphous Aluminas by Combined Central and Satellite Transition Magic Angle Spinning NMR Spectroscopy, J. Phys. Chem. C 99 (1995).
DOI: 10.1021/j100041a033
Google Scholar
[8]
J.H. Kwak, J.Z. Hu, D.H. Kim, J. Szanyi, C.H.F. Peden, Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on gamma-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study, J. Catalysis, 251 (2007) 189-194.
DOI: 10.1016/j.jcat.2007.06.029
Google Scholar
[9]
J.H. Kwak, J. Hu, A. Lukaski, D.H. Kim, J. Szanyi, C.H.F. Peden, Role of Pentacoordinated Al3+ Ions in the High Temperature Phase Transformation of gamma-Al2O3, J. Phys. Chem. C 112 (2008) 9486-9492.
DOI: 10.1021/jp802631u
Google Scholar
[10]
C. Pecharroman, I. Sobrados, J.E. Iglesias, T. Gonzalez-Carreno, J. Sanz, Thermal Evolution of Transitional Aluminas by NMR and IR Spectroscopies, J. Phys. Chem. B 103 (1999) 6160-6170.
DOI: 10.1021/jp983316q
Google Scholar
[11]
S.K. Lee, S.B. Lee, S.Y. Park, Y.S. Yi, C.W. Ahn, Structure of amorphous aluminum oxide, Phys. Rev. Lett. 103 (2009) 095501.
Google Scholar
[12]
S.K. Lee, S.Y. Park, Y.S. Yi, J. Moon, Structure and Disorder in Amorphous Alumina Thin Films: Insights from High-Resolution Solid-State NMR, J. Phys. Chem. C 114 (2010) 13890-13894.
DOI: 10.1021/jp105306r
Google Scholar
[13]
A.H. Tavakoli, M.P. Saradhi, S.J. Widgeon, J. Rufner, K. v. Benthem, S. Ushakov, S. Sen, A. Navrotsky, Amorphous Alumina Nanoparticles: Structure, Surface Energy, and Thermodynamic Phase Stability, J. Phys. Chem. C 117 (2013) 17123-17130.
DOI: 10.1021/jp405820g
Google Scholar
[14]
J. -P. Coutures, D. Massiot, C. Bessada, P. Echegut, J. -C. Rifflet, Etude par RMN 27Al d'aluminates liquides dans le domaine 1600-2100 °C, C. R. Acad. Sci. Paris 310 (1990) 1041.
DOI: 10.1002/chin.199028009
Google Scholar
[15]
D. Massiot, F. Taullele, J. -P. Coutures, Structural diagnostic of high-temperature liquid phase by aluminum-27 NMR, J. Phys. Coll. 51 (1990) 425-431.
DOI: 10.1051/jphyscol:1990551
Google Scholar
[16]
B.T. Poe, P.F. McMillan, B. Coté, D. Massiot, J. -P. Coutures, Silica-Alumina Liquids: In-Situ Study by High-Temperature 27Al NMR Spectroscopy and Molecular Dynamics Simulation, J. Phys. Chem. 96 (1992) 8220-8224.
DOI: 10.1021/j100200a005
Google Scholar
[17]
J.P. Coutures, J.C. Rifflet, P. Florian, D. Massiot, Etude par analyse thermique et par RMN très haute température de 27Al de la solidification de Al2O3 en l'absence de nucléation hétérogène : effets de la température du liquide et de la pression partielle d'oxygène, Rev. Int. Hautes Tempér. Réfract. 29 (1994).
DOI: 10.7202/705107ar
Google Scholar
[18]
P. Florian, D. Massiot, B. Poe, I. Farnan, J.P. Coutures, A time resolved 27Al NMR study of the cooling process of liquid alumina from 2450°C to crystallization, Solid State Nucl. Magn. Reson. 5 (1995) 233-238.
DOI: 10.1016/0926-2040(95)01188-x
Google Scholar
[19]
L.B. Skinner, A.C. Barnes, P.S. Salmon, L. Hennet, H.E. Fischer, C.J. Benmore, S. Kohara, J.K.R. Weber, A. Bytchkov, M.C. Wilding, J.B. Parise, T.O. Farmer, I. Pozdnyakova, S.K. Tumber, K. Ohara, Joint diffraction and modeling to the structure of liquid alumina, Phys. Rev. B 87 (2013).
DOI: 10.1103/physrevb.87.024201
Google Scholar
[20]
V. Sarou-Kanian, A.N. Gleizes, P. Florian, D. Samélor, D. Massiot, C. Vahlas, Temperature-Dependent 4-, 5- and 6-Fold Coordination of Aluminum in MOCVD-Grown Amorphous Alumina Films: A Very High Field 27Al-NMR Study, J. Phys. Chem. C 117 (2014).
DOI: 10.1021/jp4077504
Google Scholar
[21]
D. Samélor, M.M. Sovar, A. Stefanescu, A.N. Gleizes, P. Alphonse, C. Vahlas, Low temperature CVD route for the preparation of alumina coatings with a high specific surface area, in: H.P. A. Devi, M.L. Hitchman, R.A. Fischer, M.D. Allendorf (Ed. ) 15th European Conference on Chemical Vapor Deposition (EuroCVD-15), Electrochemical Society Proceedings Volume 2005-09, 2005, pp.1051-1058.
Google Scholar
[22]
D. Massiot, F. Fayon, M. Capron, I. King, S.L. Calvé, B. Alonso, J.O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Modelling 1- and 2-dimensional solid-state NMR spectra, Magn. Reson. Chem. 40 (2002) 70-76.
DOI: 10.1002/mrc.984
Google Scholar
[23]
A.N. Gleizes, C. Vahlas, M. -M. Sovar, D. Samélor, M. -C. Lafont, CVD-Fabricated Aluminum Oxide Coatings from Aluminum tri-iso-propoxide: Correlation Between Processing Conditions and Composition, Chem. Vap. Deposition 13 (2007) 23-29.
DOI: 10.1002/cvde.200606532
Google Scholar
[24]
G. Czjzek, J. Fink, H. Schlmidt, J.M.D. Coey, J.P. Rebouillat, A. Lienard, Atomic coordination and the distribution of electric field gradients in amorphous solids, Phys. Rev. B 23 (1981) 2513-2530.
DOI: 10.1103/physrevb.23.2513
Google Scholar
[25]
G.L. Caër, R.A. Brand, General models for the distributions of electric field gradients in disordered solids, J. Phys: Cond. Mat. 10 (1998).
DOI: 10.1088/0953-8984/10/47/020
Google Scholar
[26]
J. -B. d.E. d. Lacaillerie, C. Frétigny, D. Massiot, MAS NMR spectra of quadrupolar nuclei in disordered solids: The Czjzek model, J. Magn. Reson. 192 (2008) 244-251.
DOI: 10.1016/j.jmr.2008.03.001
Google Scholar
[27]
P. Florian, E. Véron, T. Green, J.R. Yates, D. Massiot, Elucidation of the Al/Si ordering in Gehlenite Ca2Al2SiO7 by combined 29Si and 27Al NMR spectroscopy / quantum chemical calculations, Chem. Mater. 24 (2012) 4068-4079.
DOI: 10.1021/cm3016935
Google Scholar
[28]
P. Florian, N. Sadiki, D. Massiot, J.P. Coutures, 27Al NMR Study of the Structure of Lanthanum- and Yttrium-Based Aluminosilicate Glasses and Melts, J. Phys. Chem. B 111 (2007) 9747-9757.
DOI: 10.1021/jp072061q
Google Scholar
[29]
S. Iftekhar, B. Pahari, K. Okhotnikov, A. Jaworski, B. Stevensson, J. Grins, M. Edén, Properties and Structures of RE2O3-Al2O3-SiO2 (RE = Y, Lu) Glasses Probed by Molecular Dynamics Simulations and Solid-State NMR: The Roles of Aluminum and Rare-Earth Ions for Dictating the Microhardness, J. Phys. Chem. C 116 (2012).
DOI: 10.1021/jp302672b
Google Scholar
[30]
Y. Balcaen, N. Radutoiu, J. Alexis, J.D. Beguin, L. Lacroix, D. Samélor, C. Vahlas, Mechanical and barrier poperties of MOCVD processed alumina coatings on Ti6Al4V titanium alloy, Surf. Coat. Technol. 206 (2011) 1684-1690.
DOI: 10.1016/j.surfcoat.2011.09.056
Google Scholar
[31]
Y. Kijima, T. Hanada, Effect of the pressure of sputtering atmosphere on the physical properties of amorphous aluminum oxide films, J. Mater. Sci. 35 (2000) 2193-2199.
Google Scholar
[32]
G. Alcala, P. Skeldon, G.E. Thompson, A.B. Mann, H. Habazaki, K. Shimizu, Mechanical properties of amorphous anodic alumina and tantala films using nanoindentation, Nanotechnology 13 (2002) 451-455.
DOI: 10.1088/0957-4484/13/4/302
Google Scholar
[33]
S. Nakao, P. Jin, D. Music, U. Helmersson, M. Ikeyama, Y. Miyagawa, S. Miyagawa, Influence of high-energy Si+ ion irradiation on microstructure and mechanical properties of alumina films, Surf. Coat. Technol. 158-159 (2002) 534-537.
DOI: 10.1016/s0257-8972(02)00300-6
Google Scholar
[34]
J.C. Barbour, J.A. Knapp, D.M. Follstaedt, T.M. Mayer, K.G. Minor, D.L. Linam, The mechanical properties of alumina films formed by plasma deposition and by ion irradiation of sapphire, Nucl. Instr. and Meth. in Phys. Res. B 166-167 (2000).
DOI: 10.1016/s0168-583x(99)00648-5
Google Scholar
[35]
M. Natali, G. Carta, V. Rigato, G. Rossetto, G. Salmaso, P. Zanella, Chemical, morphological and nano-mechanical characterizations of Al2O3 thin films deposited by metal organic chemical vapour deposition on AISI 304 stainless steel, Electrochim. Acta 50 (2005).
DOI: 10.1016/j.electacta.2004.10.097
Google Scholar
[36]
D. Samélor, A. -M. Lazar, M. Aufray, C. Tendero, L. Lacroix, J. -D. Béguin, B. Caussat, H. Vergnes, J. Alexis, D. Poquillon, N. Pébère, A. Gleizes, C. Vahlas, Amorphous Alumina Coatings: Processing, Structure and Remarkable Barrier Properties, J. Nanosci. Nanotechnol. 11 (2011).
DOI: 10.1166/jnn.2011.5068
Google Scholar
[37]
G. Boisier, M. Raciulete, D. Pébère, A.N. Gleizes, C. Vahlas, Electrochemical Behavior of Chemical Vapor Deposited Protective Aluminum Oxide Coatings on Ti6242 Titanium Alloy, Electrochem. Solid-State Lett. 11 (2008) C55-C57.
DOI: 10.1149/1.2968109
Google Scholar
[38]
A. -M. Lazar, W.P. Yespica, S. Marcelin, N. Pébère, D. Samélor, C. Tendero, C. Vahlas, Corrosion protection of 304L stainless steel by chemical vapor deposited alumina coatings, Corrosion Sci. 81 (2014) 125-131.
DOI: 10.1016/j.corsci.2013.12.012
Google Scholar