Temperature Dependent 4-, 5- and 6-Fold Coordination of Aluminum in MOCVD-Grown Amorphous Alumina Films: From Local Coordination to Material Properties

Article Preview

Abstract:

Aluminum 5-fold coordination coexisting with 4-and 6-fold coordination structurally characterizes amorphous aluminum oxide. For nearly 30 years now, 27Al MAS NMR has enabled to detect and later on to quantify this feature thanks to advances in high-resolution instrumentation. The Introduction shortly reviews the results of investigations of 5-coordinate aluminum in amorphous alumina through NMR analysis. Aluminum oxide is not a glass-forming oxide. A convenient way to obtain the amorphous state is by thin film deposition. We present here 27Al NMR analysis of a series of thin films of aluminum oxide prepared by metalorganic chemical vapor deposition (MOCVD) in the temperature range 360 ≤ Td ≤ 720 °C. In this range, low Td yield OH-containing films, while high Td yield nanocrystallites-containing films. The variation of the [4]Al, [5]Al and [6]Al content with Td is presented and discussed. It is correlated with the Td dependence of mechanical and corrosion protection properties. These properties are optimal when the structural disorder is to the utmost. Al coordination dependence on film thickness and the formation of metallic aluminum during the deposition process are also presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-133

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Dupree, I. Farnan, A.J. Forty, S. El-Mashri, L. Bottyan, A MAS NMR study of the structure of amorphous alumina films, J. Phys. Colloques 46 (1985) C8 113-117.

DOI: 10.1051/jphyscol:1985814

Google Scholar

[2] I. Farnan, R. Dupree, Y. Jeong, G.E. Thompson, G.C. Wood, A.J. Forty, Structural Chemistry of Anodic Alumina, Thin Solid Films 173 (1989) 209-213.

DOI: 10.1016/0040-6090(89)90136-3

Google Scholar

[3] I. Farnan, R. Dupree, A.J. Forty, Y.S. Jeong, G.E. Thompson, G.C. Wood, Structural information about amorphous anodic alumina from 27Al MAS NMR, Phil. Mag. Lett. 59 (1989) 189-195.

DOI: 10.1080/09500838908206342

Google Scholar

[4] R.C.T. Slade, J.C. Southern, I.M. Thompson, 27Al Nuclear Magnetic Resonance Spectroscopy Investigation of Thermal Transformation Sequences of Alumina Hydrates. Part 1. - Gibbsite, gamma-Al(OH)3, J. Mater. Chem. 1 (1991) 563-568.

DOI: 10.1039/jm9910100563

Google Scholar

[5] R.H. Meinhold, R.C.T. Slade, R.H. Newman, High Field MAS NMR, with Simulations of the Effects of Disorder on Lineshape, Applied to Thermal Transformations of Aluminas Hydrates, Appl. Magn. Reson. 4 (1993) 121-140.

DOI: 10.1007/bf03162559

Google Scholar

[6] F.R. Chen, J.G. Davis, J.J. Fripiat, Aluminum Coordination and Lewis Acidity in Transition Aluminas, J. Catal. 133 (1992) 263-278.

DOI: 10.1016/0021-9517(92)90239-e

Google Scholar

[7] G. Kunath-Fandrei, T.J. Bastow, J.S. Hall, C. Jäger, M.E. Smith, Quantification of Aluminum Coordinations in Amorphous Aluminas by Combined Central and Satellite Transition Magic Angle Spinning NMR Spectroscopy, J. Phys. Chem. C 99 (1995).

DOI: 10.1021/j100041a033

Google Scholar

[8] J.H. Kwak, J.Z. Hu, D.H. Kim, J. Szanyi, C.H.F. Peden, Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on gamma-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study, J. Catalysis, 251 (2007) 189-194.

DOI: 10.1016/j.jcat.2007.06.029

Google Scholar

[9] J.H. Kwak, J. Hu, A. Lukaski, D.H. Kim, J. Szanyi, C.H.F. Peden, Role of Pentacoordinated Al3+ Ions in the High Temperature Phase Transformation of gamma-Al2O3, J. Phys. Chem. C 112 (2008) 9486-9492.

DOI: 10.1021/jp802631u

Google Scholar

[10] C. Pecharroman, I. Sobrados, J.E. Iglesias, T. Gonzalez-Carreno, J. Sanz, Thermal Evolution of Transitional Aluminas by NMR and IR Spectroscopies, J. Phys. Chem. B 103 (1999) 6160-6170.

DOI: 10.1021/jp983316q

Google Scholar

[11] S.K. Lee, S.B. Lee, S.Y. Park, Y.S. Yi, C.W. Ahn, Structure of amorphous aluminum oxide, Phys. Rev. Lett. 103 (2009) 095501.

Google Scholar

[12] S.K. Lee, S.Y. Park, Y.S. Yi, J. Moon, Structure and Disorder in Amorphous Alumina Thin Films: Insights from High-Resolution Solid-State NMR, J. Phys. Chem. C 114 (2010) 13890-13894.

DOI: 10.1021/jp105306r

Google Scholar

[13] A.H. Tavakoli, M.P. Saradhi, S.J. Widgeon, J. Rufner, K. v. Benthem, S. Ushakov, S. Sen, A. Navrotsky, Amorphous Alumina Nanoparticles: Structure, Surface Energy, and Thermodynamic Phase Stability, J. Phys. Chem. C 117 (2013) 17123-17130.

DOI: 10.1021/jp405820g

Google Scholar

[14] J. -P. Coutures, D. Massiot, C. Bessada, P. Echegut, J. -C. Rifflet, Etude par RMN 27Al d'aluminates liquides dans le domaine 1600-2100 °C, C. R. Acad. Sci. Paris 310 (1990) 1041.

DOI: 10.1002/chin.199028009

Google Scholar

[15] D. Massiot, F. Taullele, J. -P. Coutures, Structural diagnostic of high-temperature liquid phase by aluminum-27 NMR, J. Phys. Coll. 51 (1990) 425-431.

DOI: 10.1051/jphyscol:1990551

Google Scholar

[16] B.T. Poe, P.F. McMillan, B. Coté, D. Massiot, J. -P. Coutures, Silica-Alumina Liquids: In-Situ Study by High-Temperature 27Al NMR Spectroscopy and Molecular Dynamics Simulation, J. Phys. Chem. 96 (1992) 8220-8224.

DOI: 10.1021/j100200a005

Google Scholar

[17] J.P. Coutures, J.C. Rifflet, P. Florian, D. Massiot, Etude par analyse thermique et par RMN très haute température de 27Al de la solidification de Al2O3 en l'absence de nucléation hétérogène : effets de la température du liquide et de la pression partielle d'oxygène, Rev. Int. Hautes Tempér. Réfract. 29 (1994).

DOI: 10.7202/705107ar

Google Scholar

[18] P. Florian, D. Massiot, B. Poe, I. Farnan, J.P. Coutures, A time resolved 27Al NMR study of the cooling process of liquid alumina from 2450°C to crystallization, Solid State Nucl. Magn. Reson. 5 (1995) 233-238.

DOI: 10.1016/0926-2040(95)01188-x

Google Scholar

[19] L.B. Skinner, A.C. Barnes, P.S. Salmon, L. Hennet, H.E. Fischer, C.J. Benmore, S. Kohara, J.K.R. Weber, A. Bytchkov, M.C. Wilding, J.B. Parise, T.O. Farmer, I. Pozdnyakova, S.K. Tumber, K. Ohara, Joint diffraction and modeling to the structure of liquid alumina, Phys. Rev. B 87 (2013).

DOI: 10.1103/physrevb.87.024201

Google Scholar

[20] V. Sarou-Kanian, A.N. Gleizes, P. Florian, D. Samélor, D. Massiot, C. Vahlas, Temperature-Dependent 4-, 5- and 6-Fold Coordination of Aluminum in MOCVD-Grown Amorphous Alumina Films: A Very High Field 27Al-NMR Study, J. Phys. Chem. C 117 (2014).

DOI: 10.1021/jp4077504

Google Scholar

[21] D. Samélor, M.M. Sovar, A. Stefanescu, A.N. Gleizes, P. Alphonse, C. Vahlas, Low temperature CVD route for the preparation of alumina coatings with a high specific surface area, in: H.P. A. Devi, M.L. Hitchman, R.A. Fischer, M.D. Allendorf (Ed. ) 15th European Conference on Chemical Vapor Deposition (EuroCVD-15), Electrochemical Society Proceedings Volume 2005-09, 2005, pp.1051-1058.

Google Scholar

[22] D. Massiot, F. Fayon, M. Capron, I. King, S.L. Calvé, B. Alonso, J.O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Modelling 1- and 2-dimensional solid-state NMR spectra, Magn. Reson. Chem. 40 (2002) 70-76.

DOI: 10.1002/mrc.984

Google Scholar

[23] A.N. Gleizes, C. Vahlas, M. -M. Sovar, D. Samélor, M. -C. Lafont, CVD-Fabricated Aluminum Oxide Coatings from Aluminum tri-iso-propoxide: Correlation Between Processing Conditions and Composition, Chem. Vap. Deposition 13 (2007) 23-29.

DOI: 10.1002/cvde.200606532

Google Scholar

[24] G. Czjzek, J. Fink, H. Schlmidt, J.M.D. Coey, J.P. Rebouillat, A. Lienard, Atomic coordination and the distribution of electric field gradients in amorphous solids, Phys. Rev. B 23 (1981) 2513-2530.

DOI: 10.1103/physrevb.23.2513

Google Scholar

[25] G.L. Caër, R.A. Brand, General models for the distributions of electric field gradients in disordered solids, J. Phys: Cond. Mat. 10 (1998).

DOI: 10.1088/0953-8984/10/47/020

Google Scholar

[26] J. -B. d.E. d. Lacaillerie, C. Frétigny, D. Massiot, MAS NMR spectra of quadrupolar nuclei in disordered solids: The Czjzek model, J. Magn. Reson. 192 (2008) 244-251.

DOI: 10.1016/j.jmr.2008.03.001

Google Scholar

[27] P. Florian, E. Véron, T. Green, J.R. Yates, D. Massiot, Elucidation of the Al/Si ordering in Gehlenite Ca2Al2SiO7 by combined 29Si and 27Al NMR spectroscopy / quantum chemical calculations, Chem. Mater. 24 (2012) 4068-4079.

DOI: 10.1021/cm3016935

Google Scholar

[28] P. Florian, N. Sadiki, D. Massiot, J.P. Coutures, 27Al NMR Study of the Structure of Lanthanum- and Yttrium-Based Aluminosilicate Glasses and Melts, J. Phys. Chem. B 111 (2007) 9747-9757.

DOI: 10.1021/jp072061q

Google Scholar

[29] S. Iftekhar, B. Pahari, K. Okhotnikov, A. Jaworski, B. Stevensson, J. Grins, M. Edén, Properties and Structures of RE2O3-Al2O3-SiO2 (RE = Y, Lu) Glasses Probed by Molecular Dynamics Simulations and Solid-State NMR: The Roles of Aluminum and Rare-Earth Ions for Dictating the Microhardness, J. Phys. Chem. C 116 (2012).

DOI: 10.1021/jp302672b

Google Scholar

[30] Y. Balcaen, N. Radutoiu, J. Alexis, J.D. Beguin, L. Lacroix, D. Samélor, C. Vahlas, Mechanical and barrier poperties of MOCVD processed alumina coatings on Ti6Al4V titanium alloy, Surf. Coat. Technol. 206 (2011) 1684-1690.

DOI: 10.1016/j.surfcoat.2011.09.056

Google Scholar

[31] Y. Kijima, T. Hanada, Effect of the pressure of sputtering atmosphere on the physical properties of amorphous aluminum oxide films, J. Mater. Sci. 35 (2000) 2193-2199.

Google Scholar

[32] G. Alcala, P. Skeldon, G.E. Thompson, A.B. Mann, H. Habazaki, K. Shimizu, Mechanical properties of amorphous anodic alumina and tantala films using nanoindentation, Nanotechnology 13 (2002) 451-455.

DOI: 10.1088/0957-4484/13/4/302

Google Scholar

[33] S. Nakao, P. Jin, D. Music, U. Helmersson, M. Ikeyama, Y. Miyagawa, S. Miyagawa, Influence of high-energy Si+ ion irradiation on microstructure and mechanical properties of alumina films, Surf. Coat. Technol. 158-159 (2002) 534-537.

DOI: 10.1016/s0257-8972(02)00300-6

Google Scholar

[34] J.C. Barbour, J.A. Knapp, D.M. Follstaedt, T.M. Mayer, K.G. Minor, D.L. Linam, The mechanical properties of alumina films formed by plasma deposition and by ion irradiation of sapphire, Nucl. Instr. and Meth. in Phys. Res. B 166-167 (2000).

DOI: 10.1016/s0168-583x(99)00648-5

Google Scholar

[35] M. Natali, G. Carta, V. Rigato, G. Rossetto, G. Salmaso, P. Zanella, Chemical, morphological and nano-mechanical characterizations of Al2O3 thin films deposited by metal organic chemical vapour deposition on AISI 304 stainless steel, Electrochim. Acta 50 (2005).

DOI: 10.1016/j.electacta.2004.10.097

Google Scholar

[36] D. Samélor, A. -M. Lazar, M. Aufray, C. Tendero, L. Lacroix, J. -D. Béguin, B. Caussat, H. Vergnes, J. Alexis, D. Poquillon, N. Pébère, A. Gleizes, C. Vahlas, Amorphous Alumina Coatings: Processing, Structure and Remarkable Barrier Properties, J. Nanosci. Nanotechnol. 11 (2011).

DOI: 10.1166/jnn.2011.5068

Google Scholar

[37] G. Boisier, M. Raciulete, D. Pébère, A.N. Gleizes, C. Vahlas, Electrochemical Behavior of Chemical Vapor Deposited Protective Aluminum Oxide Coatings on Ti6242 Titanium Alloy, Electrochem. Solid-State Lett. 11 (2008) C55-C57.

DOI: 10.1149/1.2968109

Google Scholar

[38] A. -M. Lazar, W.P. Yespica, S. Marcelin, N. Pébère, D. Samélor, C. Tendero, C. Vahlas, Corrosion protection of 304L stainless steel by chemical vapor deposited alumina coatings, Corrosion Sci. 81 (2014) 125-131.

DOI: 10.1016/j.corsci.2013.12.012

Google Scholar