Activated Carbon Fibre Monoliths for Hydrogen Storage

Article Preview

Abstract:

Porous adsorbents are currently investigated for hydrogen storage application. From a practical point of view, in addition to high porosity developments, high material densities are required, in order to confine as much material as possible in a tank device. In this study, we use different measured sample densities (tap, packing, compacted and monolith) for analyzing the hydrogen adsorption behavior of activated carbon fibres (ACFs) and activated carbon nanofibres (ACNFs) which were prepared by KOH and CO2 activations, respectively. Hydrogen adsorption isotherms are measured for all of the adsorbents at room temperature and under high pressures (up to 20 MPa). The obtained results confirm that (i) gravimetric H2 adsorption is directly related to the porosity of the adsorbent, (ii) volumetric H2 adsorption depends on the adsorbent porosity and importantly also on the material density, (iii) the density of the adsorbent can be improved by packing the original adsorbents under mechanical pressure or synthesizing monoliths from them, (iv) both ways (packing under pressure or preparing monoliths) considerably improve the storage capacity of the starting adsorbents, and (v) the preparation of monoliths, in addition to avoid engineering constrains of packing under mechanical pressure, has the advantage of providing high mechanical resistance and easy handling of the adsorbent.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-111

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta, Post-Combustion CO2 Capture Using Solid Sorbents: A Review, Ind. Eng. Chem. Res. 51 (2012) 1438-1463.

DOI: 10.1021/ie200686q

Google Scholar

[2] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed. 49 (2010) 6058-6082.

DOI: 10.1002/anie.201000431

Google Scholar

[3] N.P. Wickramaratne, M. Jaroniec, Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres, J. Mater. Chem. A 1 (2013) 112-116.

DOI: 10.1039/c2ta00388k

Google Scholar

[4] J.P. Marco-Lozar, M. Kunowsky, F. Suárez-García, J.D. Carruthers, A. Linares-Solano, Activated carbon monoliths for gas storage at room temperature, Energy Environ. Sci. 5 (2012) 9833-9842.

DOI: 10.1039/c2ee22769j

Google Scholar

[5] J.P. Marco-Lozar, M. Kunowsky, F. Suárez-García, A. Linares-Solano, Sorbent design for CO2 capture under different flue gas conditions, Carbon 72 (2014) 125-134.

DOI: 10.1016/j.carbon.2014.01.064

Google Scholar

[6] J.P. Marco-Lozar, M. Kunowsky, J.D. Carruthers, A. Linares-Solano, Gas storage scale-up at room temperature on high density carbon materials, Carbon (2014), DOI: 10. 1016/j. carbon. 2014. 04. 058.

DOI: 10.1016/j.carbon.2014.04.058

Google Scholar

[7] J. Zumerchik, Macmillan Encyclopedia of Energy, Macmillan Reference USA, New York, (2001).

Google Scholar

[8] P. Patnaik, Handbook of Inorganic Chemicals, The McGraw-Hill Companies, Inc., New York, (2002).

Google Scholar

[9] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353-358.

DOI: 10.1038/35104634

Google Scholar

[10] M. Kunowsky, J.P. Marco-Lozar, A. Linares-Solano, Material Demands for Storage Technologies in a Hydrogen Economy, J. Renewable Energy, Article ID 878329 (2013) 1-16.

DOI: 10.1155/2013/878329

Google Scholar

[11] G.D. Berry, S.M. Aceves, Onboard storage alternatives for hydrogen vehicles, Energy & Fuels 12 (1998) 49-55.

DOI: 10.1021/ef9700947

Google Scholar

[12] M. Rzepka, P. Lamp, M.A. De La Casa-Lillo, Physisorption of hydrogen on microporous carbon and carbon nanotubes, J. Phys. Chem. B 102 (1998), 10894-10898.

DOI: 10.1021/jp9829602

Google Scholar

[13] A.M. Seayad, D.M. Antonell, Recent Advances in Hydrogen Storage in Metal-Containing Inorganic Nanostructures and Related Materials, Adv. Mater. 16 (2004) 765-777.

DOI: 10.1002/adma.200306557

Google Scholar

[14] K.L. Lim, H. Kazemian, Z. Yaakob, W.R.W. Daud, Solid-state materials and methods for hydrogen storage: A critical review, Chem. Eng. Technol. 33 (2010) 213-226.

DOI: 10.1002/ceat.200900376

Google Scholar

[15] M. Jordá-Beneyto, M. Kunowsky, D. Lozano-Castelló, F. Suárez-García, D. Cazorla-Amorós, A. Linares-Solano, Hydrogen Storage in Carbon Materials, in: A.P. Terzyk, P.A. Gauden, P. Kowalczyk (Eds. ), Carbon Materials – Theory and Practice, Research Signpost, Kerala, 2008, pp.245-281.

DOI: 10.1002/9780470483428.ch8

Google Scholar

[16] A. Linares-Solano, D. Lozano-Castelló, M.A. Lillo-Ródenas, D. Cazorla-Amorós, Carbon activation by alkaline hydroxides: preparation and reactions, porosity and performances, in: Chemistry & Physics of Carbon, Volume 30, 2008, pp.1-62.

DOI: 10.1201/9781420042993.ch1

Google Scholar

[17] F. Suarez-García, M. Jordá, D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, Hydrogen adsorption on carbon materials at high pressures and different temperatures, in: Recent Advances in Adsorption Process, Springer, 2008, pp.165-175.

DOI: 10.1007/978-1-4020-6805-8_15

Google Scholar

[18] A. Linares-Solano, D. Cazorla-Amorós, Adsorption on Activated Carbon Fibers, in: Adsorption by Carbons, Elsevier Ltd., 2008, pp.431-449.

DOI: 10.1016/b978-008044464-2.50021-3

Google Scholar

[19] A. Linares-Solano, M.A. Lillo-Ródenas, J.P. Marco-Lozar, M. Kunowsky, A.J. Romero-Anaya, Utility of sodium and potassium hydroxides for preparing superior quality activated carbons, in: Hydroxides: Synthesis, Types and Applications, Nova Science Publishers, 2012, pp.73-104.

Google Scholar

[20] A. Linares-Solano, D. Cazorla-Amorós, J.P. Marco-Lozar, F. Suárez-García, High pressure gas storage on porous solids; a comparative study of MOFs and activated carbons, in: Coordination Polymers & MOFs, Nova Science Publishers, 2012, pp.197-223.

DOI: 10.1016/j.ijhydene.2011.11.023

Google Scholar

[21] A. Linares-Solano, D. Cazorla-Amorós, Activated Carbon fibers, in: Handbook of Advanced Ceramics, Academic Press: Elsevier Inc., second ed, 2013, pp.155-169.

DOI: 10.1016/b978-0-12-385469-8.00010-1

Google Scholar

[22] D. Lozano-Castelló, F. Suárez-García, A. Linares-Solano, D. Cazorla-Amorós, Advances in hydrogen storage in carbon materials, in: Renewable Hydrogen Technologies: Production, Purification, Storage, Aplications and Safety, Elsevier, 2013, pp.269-291.

DOI: 10.1016/b978-0-444-56352-1.00012-x

Google Scholar

[23] J. Alcañiz-Monge, D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, Gas storage - adsorbed natural gas (ANG) & hydrogen storage, in: Green Carbon Materials: Advances and Applications, Pan Stanford, (2013).

DOI: 10.1016/b978-0-444-56352-1.00012-x

Google Scholar

[24] R. Chahine, T.K. Bose, Low-pressure adsorption storage of hydrogen, Int. J. Hydrogen Energy 19 (1994) 161-164.

DOI: 10.1016/0360-3199(94)90121-x

Google Scholar

[25] M. Kunowsky, F. Suárez-García, A. Linares-Solano, Adsorbent density impact on gas storage capacities, Micropor. Mesopor. Mater. 173 (2013) 47-52.

DOI: 10.1016/j.micromeso.2013.02.010

Google Scholar

[26] M. Kunowsky, J.P. Marco-Lozar, D. Cazorla-Amorós, A. Linares-Solano, Scale-up activation of carbon fibres for hydrogen storage, Int. J. Hydrogen Energy 35 (2009) 2393-2402.

DOI: 10.1016/j.ijhydene.2009.12.151

Google Scholar

[27] A. Oya, N. Kasahara, Preparation of thin carbon fibers from phenol-formaldehyde polymer micro-beads dispersed in polyethylene matrix, Carbon 38 (2000), 1141-1144.

DOI: 10.1016/s0008-6223(99)00232-8

Google Scholar

[28] D. Hulicova, A. Oya, The polymer blend technique as a method for designing fine carbon materials, Carbon 41 (2003) 1443-1450.

DOI: 10.1016/s0008-6223(03)00089-7

Google Scholar

[29] M. Kunowsky, J.P. Marco-Lozar, A. Oya, A. Linares-Solano, Hydrogen storage in CO2-activated amorphous nanofibers and their monoliths, Carbon 50 (2012) 1407-1416.

DOI: 10.1016/j.carbon.2011.11.013

Google Scholar

[30] D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, D.F. Quinn, Activated carbon monoliths for methane storage: influence of binder, Carbon 40 (2002) 2817-2825.

DOI: 10.1016/s0008-6223(02)00194-x

Google Scholar