Hydrogenation of Nanocrystalline Mg2Ni Alloy Prepared by High Energy Ball-Milling Followed by Equal-Channel Angular Pressing or Cold Rolling

Article Preview

Abstract:

Nanocrystalline Mg2Ni powders produced by high energy ball milling (HEBM) were subjected to further severe plastic deformation by cold rolling (CR) or equal-channel angular pressing (ECAP). The microstructure of the alloys have been analysed by the Convolutional whole profile fitting method of the X-ray line profiles. The hydrogenation behavior has been studied by absorption kinetic measurements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-117

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.C.E. Rönnebro, E.H. Majzoub, Recent advances in metal hydrides for clean energy application, MRS Bulletin 38 (2013) 452-458.

DOI: 10.1557/mrs.2013.132

Google Scholar

[2] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (2011) 353-358.

DOI: 10.1038/35104634

Google Scholar

[3] R.A. Varin, T. Czujko, Z.S. Wronski, Nanomaterials for Solid State Hydrogen Storage, New York: Springer Science (2009).

Google Scholar

[4] L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen, R. Schulz, Nanocrystalline Hydrogen Absorbing Alloys, Mater Sci. Forum 225 (1996) 853-858.

DOI: 10.4028/www.scientific.net/msf.225-227.853

Google Scholar

[5] D. Fátay, Á. Révész, T. Spassov, Particle size and catalytic effect on the dehydriding of MgH2, J. Alloys Compds. 399 (2005) 237-241.

DOI: 10.1016/j.jallcom.2005.02.043

Google Scholar

[6] W. Oelerich, T. Klassen, R. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials, J. Alloys Compds. 315 (2001) 237-242.

DOI: 10.1016/s0925-8388(00)01284-6

Google Scholar

[7] D. Fátay, T. Spassov, P. Delchev, G. Ribárik, Á. Révész, Microstructural development in nanocrystalline MgH2 during H-absorption/desorption cycling, Int. J. Hydrogen Energy 32 (2007) 2914-2919.

DOI: 10.1016/j.ijhydene.2006.12.018

Google Scholar

[8] K. Zeng, T. Klassen, W. Oelerich, R. Bormann, Thermodynamic analysis of the hydriding process of MgNi alloys, J. Alloys Compds. 283 (1999) 213-224.

DOI: 10.1016/s0925-8388(98)00902-5

Google Scholar

[9] Á. Révész, Zs. Kánya, T. Verebélyi, P.J. Szabó, A.P. Zhilyaev, T. Spassov, The effect of high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30, J. Alloys Compds. 504 (2010) 83-88.

DOI: 10.1016/j.jallcom.2010.05.058

Google Scholar

[10] R.Z. Valiev, T.G. Langdon, Principles of equal-chanel angular pressing as a processing tool for grain refinement, Prog. Mater Sci. 51 (2006) 881-981.

DOI: 10.1016/j.pmatsci.2006.02.003

Google Scholar

[11] K. Edalati, A. Yamamoto, Z. Horita, T. Ishihara, High pressure torsion of pure magnesium, Scripta Mater 64 (2011) 880-883.

DOI: 10.1016/j.scriptamat.2011.01.023

Google Scholar

[12] S.D. Vincent, J. Huot, Effect of air contamination on ball milling and cold rolling of magnesium hydride, J. Alloys Compds. 509 (2012) 175-179.

DOI: 10.1016/j.jallcom.2011.02.147

Google Scholar

[13] R. Floriano, D.R. Leiva, S. Deledda, B.C. Hauback, W.J. Botta, MgH2-based nanocomposites prepared by short-time high energy ball milling followed by cold rolling: A new processing route, Int. J. Hydrogen Energy 39 (2014) 4404-4013.

DOI: 10.1016/j.ijhydene.2013.12.209

Google Scholar

[14] V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing, Int. J. Hydrogen Energy 34 (2009) 6320-6324.

DOI: 10.1016/j.ijhydene.2009.05.136

Google Scholar

[15] V. Skripnyuk, E. Buchman, E. Rabkin, Y. Estrin, M. Popov, S. Jorgensen, The effect of equal channel angular pressing on the hydrogen storage properties of an eutectic Mg-Ni alloy, J. Alloys Compds. 436 (2007) 99-106.

DOI: 10.1016/j.jallcom.2006.07.030

Google Scholar

[16] A.M. Jorge, G.F. de Lima, M.R. Martins Triques, W.J. Botta, C.S. Kiminami, R.P. Nogueira, A.R. Yavari, T.G. Langdon, Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling, Int. J. Hydrogen Energy 39 (2014).

DOI: 10.1016/j.ijhydene.2013.12.154

Google Scholar

[17] Á. Révész, M. Gajdics, L.K. Varga, G. Krállics, L. Péter, T. Spassov, Hydrogen storage of nanocrystalline Mg-Ni alloy processed by equal-channel angular pressing and cold rolling, Int. J. Hydrogen Energy (2014).

DOI: 10.1016/j.ijhydene.2014.01.059

Google Scholar

[18] G. Ribárik, J. Gubicza, T. Ungár, Correlation between strength and microstructure of ball-milled Al-Mg alloys determined by X-ray diffraction, Mat. Sci. Eng. A 387-389 (2004) 343-347.

DOI: 10.1016/j.msea.2004.01.089

Google Scholar

[19] Á. Révész, D. Fátay, Microstructural evolution of ball-milled MgH2 during a complete dehydrogenation-hydrogenation cycle, J. Power Sources 195 (2010) 6997-7002.

DOI: 10.1016/j.jpowsour.2010.04.085

Google Scholar

[20] Á. Révész, M. Gajdics, T. Spassov, Microstructural evolution of ball-milled Mg-Ni powder during hydrogen sorption, Int. J. Hydrogen Energy 38 (2013) 8342-8349.

DOI: 10.1016/j.ijhydene.2013.04.128

Google Scholar

[21] F.C. Gennari, M.R. Esquivel, Structural characterization and hydrogen sorption properties of nanocrystalline Mg2Ni, J. Alloys Compd. 459 (2008) 425-432.

DOI: 10.1016/j.jallcom.2007.04.283

Google Scholar

[22] P.W. M Jacobs, F. C Tompkins: Classification and theory of solid reactions, in Chemistry of the Solid State, W.E. Garner (ed. ), Butterworth, London, (1955) 184-212.

Google Scholar