[1]
E.C.E. Rönnebro, E.H. Majzoub, Recent advances in metal hydrides for clean energy application, MRS Bulletin 38 (2013) 452-458.
DOI: 10.1557/mrs.2013.132
Google Scholar
[2]
L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (2011) 353-358.
DOI: 10.1038/35104634
Google Scholar
[3]
R.A. Varin, T. Czujko, Z.S. Wronski, Nanomaterials for Solid State Hydrogen Storage, New York: Springer Science (2009).
Google Scholar
[4]
L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen, R. Schulz, Nanocrystalline Hydrogen Absorbing Alloys, Mater Sci. Forum 225 (1996) 853-858.
DOI: 10.4028/www.scientific.net/msf.225-227.853
Google Scholar
[5]
D. Fátay, Á. Révész, T. Spassov, Particle size and catalytic effect on the dehydriding of MgH2, J. Alloys Compds. 399 (2005) 237-241.
DOI: 10.1016/j.jallcom.2005.02.043
Google Scholar
[6]
W. Oelerich, T. Klassen, R. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials, J. Alloys Compds. 315 (2001) 237-242.
DOI: 10.1016/s0925-8388(00)01284-6
Google Scholar
[7]
D. Fátay, T. Spassov, P. Delchev, G. Ribárik, Á. Révész, Microstructural development in nanocrystalline MgH2 during H-absorption/desorption cycling, Int. J. Hydrogen Energy 32 (2007) 2914-2919.
DOI: 10.1016/j.ijhydene.2006.12.018
Google Scholar
[8]
K. Zeng, T. Klassen, W. Oelerich, R. Bormann, Thermodynamic analysis of the hydriding process of MgNi alloys, J. Alloys Compds. 283 (1999) 213-224.
DOI: 10.1016/s0925-8388(98)00902-5
Google Scholar
[9]
Á. Révész, Zs. Kánya, T. Verebélyi, P.J. Szabó, A.P. Zhilyaev, T. Spassov, The effect of high-pressure torsion on the microstructure and hydrogen absorption kinetics of ball-milled Mg70Ni30, J. Alloys Compds. 504 (2010) 83-88.
DOI: 10.1016/j.jallcom.2010.05.058
Google Scholar
[10]
R.Z. Valiev, T.G. Langdon, Principles of equal-chanel angular pressing as a processing tool for grain refinement, Prog. Mater Sci. 51 (2006) 881-981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[11]
K. Edalati, A. Yamamoto, Z. Horita, T. Ishihara, High pressure torsion of pure magnesium, Scripta Mater 64 (2011) 880-883.
DOI: 10.1016/j.scriptamat.2011.01.023
Google Scholar
[12]
S.D. Vincent, J. Huot, Effect of air contamination on ball milling and cold rolling of magnesium hydride, J. Alloys Compds. 509 (2012) 175-179.
DOI: 10.1016/j.jallcom.2011.02.147
Google Scholar
[13]
R. Floriano, D.R. Leiva, S. Deledda, B.C. Hauback, W.J. Botta, MgH2-based nanocomposites prepared by short-time high energy ball milling followed by cold rolling: A new processing route, Int. J. Hydrogen Energy 39 (2014) 4404-4013.
DOI: 10.1016/j.ijhydene.2013.12.209
Google Scholar
[14]
V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing, Int. J. Hydrogen Energy 34 (2009) 6320-6324.
DOI: 10.1016/j.ijhydene.2009.05.136
Google Scholar
[15]
V. Skripnyuk, E. Buchman, E. Rabkin, Y. Estrin, M. Popov, S. Jorgensen, The effect of equal channel angular pressing on the hydrogen storage properties of an eutectic Mg-Ni alloy, J. Alloys Compds. 436 (2007) 99-106.
DOI: 10.1016/j.jallcom.2006.07.030
Google Scholar
[16]
A.M. Jorge, G.F. de Lima, M.R. Martins Triques, W.J. Botta, C.S. Kiminami, R.P. Nogueira, A.R. Yavari, T.G. Langdon, Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling, Int. J. Hydrogen Energy 39 (2014).
DOI: 10.1016/j.ijhydene.2013.12.154
Google Scholar
[17]
Á. Révész, M. Gajdics, L.K. Varga, G. Krállics, L. Péter, T. Spassov, Hydrogen storage of nanocrystalline Mg-Ni alloy processed by equal-channel angular pressing and cold rolling, Int. J. Hydrogen Energy (2014).
DOI: 10.1016/j.ijhydene.2014.01.059
Google Scholar
[18]
G. Ribárik, J. Gubicza, T. Ungár, Correlation between strength and microstructure of ball-milled Al-Mg alloys determined by X-ray diffraction, Mat. Sci. Eng. A 387-389 (2004) 343-347.
DOI: 10.1016/j.msea.2004.01.089
Google Scholar
[19]
Á. Révész, D. Fátay, Microstructural evolution of ball-milled MgH2 during a complete dehydrogenation-hydrogenation cycle, J. Power Sources 195 (2010) 6997-7002.
DOI: 10.1016/j.jpowsour.2010.04.085
Google Scholar
[20]
Á. Révész, M. Gajdics, T. Spassov, Microstructural evolution of ball-milled Mg-Ni powder during hydrogen sorption, Int. J. Hydrogen Energy 38 (2013) 8342-8349.
DOI: 10.1016/j.ijhydene.2013.04.128
Google Scholar
[21]
F.C. Gennari, M.R. Esquivel, Structural characterization and hydrogen sorption properties of nanocrystalline Mg2Ni, J. Alloys Compd. 459 (2008) 425-432.
DOI: 10.1016/j.jallcom.2007.04.283
Google Scholar
[22]
P.W. M Jacobs, F. C Tompkins: Classification and theory of solid reactions, in Chemistry of the Solid State, W.E. Garner (ed. ), Butterworth, London, (1955) 184-212.
Google Scholar