Effect of Doping of Fe into TiO2 Layer in Fe2O3/TiO2/FTO System for High Performance of Water Splitting

Article Preview

Abstract:

Hydrogen has unique physical and chemical properties which present benefits and challenges to its successful widespread adoption as a fuel. The photoelectrochemical (PEC) water splitting process with semiconductor metal oxides can be a promising solution to the global energy problem. Although amongst metal oxides Fe2O3 by 2.2 eV bang gap energy is more applicable, for reducing the recombination of electron and hole, Fe was doped into TiO2. In this study Fe2O3/Fe doped TiO2 photocatalysts were compared with Fe-doped TiO2 and TiO2 structures by using layer by layer-self-assemble (LBL-SA) method and dipping process on FTO glass. According to our results the Fe2O3 coated on Fe doped TiO2 /FTO has had best results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-89

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature. 414 (2001) 625–627.

DOI: 10.1038/414625a

Google Scholar

[2] A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature. 238 (1972) 37 - 38.

DOI: 10.1038/238037a0

Google Scholar

[3] M. Gratzel, Photoelectrochemical cells, Nature. 414 (2001) 338-44.

Google Scholar

[4] D. Jing, L. Guo, L. Zhao, X. Zhang, H. Liu, M. Li, et al., Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration, Int J Hydrogen Energ. 35 (2010) 7087–7097.

DOI: 10.1016/j.ijhydene.2010.01.030

Google Scholar

[5] D. Meissner, R. Memming, B. Kastening, D. Bahnemann, Fundamental problems of water splitting at cadmium sulfide, Chem Phys Lett. 127 (1986) 419–423.

DOI: 10.1016/0009-2614(86)80583-8

Google Scholar

[6] F. Le Formal, M. Gratzel, K. Sivula, Controlling photoactivity in ultrathin hematite films for solar water-splitting, Adv. Funct. Mater. 20 (2010) 1099–1107.

DOI: 10.1002/adfm.200902060

Google Scholar

[7] K. Sivula, F. Le Formal, and M. Gratzel, Solar water splitting: progress using hematite (α-Fe (2) O (3) photoelectrodes, ChemSusChem. 4 (2011) 432–449.

DOI: 10.1002/cssc.201000416

Google Scholar

[8] I. Cesar, A. Kay, J.A. Gonzalez Martinez, M. Gratzel, Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping, J Am Chem Soc. 128 (2006) 4582–4583.

DOI: 10.1021/ja060292p

Google Scholar

[9] A. Watanabe, H. Kozuka, Photoanodic properties of sol gel-derived Fe2O3 thin films containing dispersed gold and silver particles, J. Phys. Chem. B 107 (2003) 12713–12720.

DOI: 10.1021/jp0303568

Google Scholar

[10] K. T. Ranjit, I. Willner, S. H. Bossmann and A. M. Braun, Lanthanide oxide-doped titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid, Environ. Sci. Technol. 35 (2001) 1544–1549.

DOI: 10.1021/es001613e

Google Scholar

[11] X. Wang, J. C. Yu, Y. Chen, L. Wu, X. Fu, Development of Super-Hydrophilicity on Nitrogen-Doped TiO2 Thin Film Surface by Photoelectrochemical Method under Visible Light, Environ. Sci. Technol. 40 (2006) 2369-2374.

Google Scholar

[12] A. Brambilla, A. Calloni, G. Berti, G. Bussetti, L. Duò, F. Ciccacci, Growth and Interface Reactivity of Titanium Oxide Thin Films on Fe, J. Phys. Chem. 117 (2013) 9229–9236.

DOI: 10.1021/jp400159j

Google Scholar

[13] E. Borgarelio, J. Kiwi, F. Pelizzetti, M. Visca and M. Gritzel, Sustained water cleavage by visible light, J. Am. Chem. Soc. 103 (1981) 6324–6329.

DOI: 10.1021/ja00411a010

Google Scholar

[14] J. Kiwi and M. Gritzel, Heterogeneous photocatalysis: enhanced dihydrogen production in titanium dioxide dispersions under irradiation. The effect of magnesium promoter at the semiconductor interface, J. Phys. Chem. 90 (1986) 637–640.

DOI: 10.1021/j100276a031

Google Scholar

[15] A. Davidson and M. Che, Temperature-induced diffusion of probe vanadium(IV) ions into the matrix of titanium dioxide as investigated by ESR techniques, J. Phys. Chem. 96 (24) (1992) 9909–9915.

DOI: 10.1021/j100203a061

Google Scholar

[16] Z. Luo, Q. H. Gao, Decrease in the photoactivity of TiO2 pigment on doping with transition metals, Journal of Photochemistry and Photobiology A: Chemistry. (1992) 367–375.

DOI: 10.1016/1010-6030(92)85202-6

Google Scholar

[17] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Titania Nanotubes Prepared by Chemical Processing, Adv Mater. (1999) 11-130.

DOI: 10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h

Google Scholar

[18] L. Jing, S. Lan, Z. Hui-Fang, W. Cheng-Lin, D. Rong-Gui and L. Chang-Jian, Preparation and Photoelectrochemical Properties of Fe-doped TiO2 Nanotube Arrays, Journal of Electrochemistry 14 (2008) 213-217.

Google Scholar

[19] X. H. Wang, J. G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi and T. Ishigaki, Pyrogenic Iron (III)-Doped TiO2 Nanopowders Synthesized in RF Thermal Plasma:  Phase Formation, Defect Structure, Band Gap, and Magnetic Properties, J Am Chem Soc. 127 (2005).

DOI: 10.1021/ja051240n

Google Scholar

[20] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature. 238 (1972) 37 - 38.

DOI: 10.1038/238037a0

Google Scholar

[21] M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, Photocatalytic hydrogenaTiOn of propyne with water on small-particle titania: size quantization effects and reaction intermediates, J. Phys. Chem. 91 (1987) 4305–4310.

DOI: 10.1021/j100300a021

Google Scholar

[22] H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi and M. Anpo, Characterization of Titanium−Silicon Binary Oxide Catalysts Prepared by the Sol−Gel Method and Their Photocatalytic Reactivity for the Liquid-Phase Oxidation of 1-Octanol, J. Phys. Chem. 102 (1998).

DOI: 10.1021/jp981343a

Google Scholar

[23] M. Alam Khan, S. Ihl Woo, O. Bong Yang, Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction, Int J Hydrogen Energ. (2008) 5345-5351.

DOI: 10.1016/j.ijhydene.2008.07.119

Google Scholar

[24] K. J. Noh, B. R. Kim, G. J. Yoon, S. C. Jung, W. S. Kang and S. J. Kim, Microstructural Effect on the Photoelectrochemical Performance of Hematite-Fe2O3 Photoanode for Water Splitting, Electron Mater Lett. (2012) 345-350.

DOI: 10.1007/s13391-012-2007-0

Google Scholar

[25] E. Noh, K. J. Noh, K. S. Yun, B. R. Kim, H. J. Jeong, H. J. Oh, S. C. Jung, W. S. Kang and S. J. Kim, Enhanced Water Splitting by Fe2O3-TiO2-FTO Photoanode with Modified Energy Band Structure, The Scientific World Journal (2013) 723201-723209.

DOI: 10.1155/2013/723201

Google Scholar

[26] K‏. J‏. Noh, H‏. J‏. Oh, H‏. K‏. Ku, S‏. C‏. Jung, W‏. S‏. Kang, S‏. Park and S‏. J‏. Kim, Annealing Effect on the Microstructure and Electrochemical Properties of Fe2O3/H-TiNT/FTO Thin Film, Nanoscience and Nanotechnology 13 (2013) 1863-1866.

DOI: 10.1166/jnn.2013.6990

Google Scholar

[27] H. J. Oh, K. J. Noh, B. R. Kim, W. S. Kang, S. C. Jung, and S. J. Kim. Fabrication of Fe2O3/TiO2 photoanode for improved photoelectrochemical water splitting, Jpn J Appl Phys. 52 (2013) ID 01AC15.

DOI: 10.7567/jjap.52.01ac15

Google Scholar