The Effect of Compacting Pressure on Power Loss in a SMC

Article Preview

Abstract:

The paper considers the effects of compacting pressure and the working parameters (maximum flux density, excitation frequency) on power loss dissipated in a soft magnetic composite core. The effects may be efficiently described with simple power laws . The description has been verified using commercial SMC cores. The proposed dependencies are in a good agreement with experiment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

208-218

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Shokrollahi, K. Janghorban, Soft magnetic composite materials (SMCs) (review), J. Mater. Proc. Techn. 189 (2007) 1-12.

Google Scholar

[2] B. Ślusarek, Powder magnetic materials, Przegl. Elektrot. 4 (2010), pp.16-19.

Google Scholar

[3] P. Lemieux, R. Gurthie, M. Isac, Optimizing Soft Magnetic Composites for power frequency applications and power-trains, JOM 64 (2012) 374-387.

DOI: 10.1007/s11837-012-0262-z

Google Scholar

[4] B. Ślusarek, B. Jankowski, K. Sokalski, J. Szczygłowski, Characteristics of power loss in soft magnetic composites a key for designing the best values of technological parameters, J. Alloy Compd. 581 (2013) 699-704.

DOI: 10.1016/j.jallcom.2013.07.084

Google Scholar

[5] C. Cyr, Modélisation et caractérisation des matériaux magnétiques composites doux utilisés dans les machines électriques, PhD Thesis, Université Laval, Canada, (2007).

Google Scholar

[6] L. Hultmann, O. Andersson, Advances in SMC technology – materials and applications, paper presented at EURO PM2009, Copenhagen, Denmark on 13. 10. (2009).

Google Scholar

[7] R. Wojciechowski, C. Jędryczka, P. Łukasiewicz, D. Kapelski, Analysis of high speed permanent magnet motor with powder core material, COMPEL 31 (2012) 1528-1540.

DOI: 10.1108/03321641211248282

Google Scholar

[8] H. Shokrollahi, K. Janghorban, The effect of compaction parameters and particle size on magnetic properties of iron-based alloys used in soft magnetic composites, Mater. Sci. Eng. 134 (2006) 41-43.

DOI: 10.1016/j.mseb.2006.07.015

Google Scholar

[9] A. H. Taghvaei, H. Shokrollahi, M. Ghaffari, K. Janghorban, Influence of particle size and compaction pressure on the magnetic properties of iron-phenolic soft magnetic composites, J. Phys. Chem. Solid. 71 (2010) 7-11.

DOI: 10.1016/j.jpcs.2009.08.008

Google Scholar

[10] W. Ding, R. Wu, Z. Xiu, G. Chen, J. Song, Y. Liao, G. Wu, W. Ding, Effect of iron particle size and volume fraction on the magnetic properties of Fe/silicate glass Soft Magnetic Composites, J. Supercond. Nov. Magn. 74 (2014) 435-441.

DOI: 10.1007/s10948-013-2281-6

Google Scholar

[11] L. P. Lefebvre, S. Pelletier, C. Gelinas, Effect of electrical resistivity on core losses in soft magnetic iron powder materials, J. Magn. Magn. Mater. 176 (1997) L93-L96.

DOI: 10.1016/s0304-8853(97)01006-8

Google Scholar

[12] T. Saito, S. Takemoto, T. Iriyama, Resistivity and core size dependencies of eddy current loss for Fe-Si compressed cores, IEEE Trans. Magn. 41 (2005) 3301-3303.

DOI: 10.1109/tmag.2005.854905

Google Scholar

[13] G. Bertotti, General properties of power losses in soft magnetic materials, IEEE Trans. Magn. 24 (1988) 621-630.

DOI: 10.1109/20.43994

Google Scholar

[14] G. Bertotti, I. D. Mayergoyz (Eds. ), The science of hysteresis, Elsevier, New York, (2005).

Google Scholar

[15] P. Kollár, Z. Birčaková, J. Füzer, R. Bureš, M. Fáberova, Power loss separation in Fe-based composite materials, J. Magn. Magn. Mater. 327 (2013) 146-150.

DOI: 10.1016/j.jmmm.2012.09.055

Google Scholar

[16] M. De Wulf, L. Anestiev, L. Dupré, L. Froyen, J. Melkebeek, Magnetic properties and loss separation in iron powder soft magnetic composite materials, J. Appl. Phys. 91 (2002) 7845-7847.

DOI: 10.1063/1.1446115

Google Scholar

[17] A. H. Taghvaei, H. Shokrollahi, K. Janghorban, H. Abiri, Eddy current and total power loss separation in the iron–phosphate–polyepoxy soft magnetic composites, Mat. Des. 30 (2009) 3989-3995.

DOI: 10.1016/j.matdes.2009.05.026

Google Scholar

[18] P. Kollár, Z. Birčaková, J. Füzer, J. Füzerová, R. Bureš, M. Fáberova, Wide frequency range AC magnetic properties of Fe-based composite materials, Acta Phys. Pol. A 118 (2010) 759-761.

DOI: 10.12693/aphyspola.118.759

Google Scholar

[19] O. de la Barrière, C. Appino, F. Fiorillo, C. Ragusa, M. Lecrivain, L. Rocchino, H. Ben Ahmed, M. Gabsi, F. Malazeyrat, M. LoBue, Characterization and prediction of magnetic losses in Soft Magnetic Composites under distorted induction waveform, IEEE Trans. Magn. 49 (2012).

DOI: 10.1109/tmag.2012.2218614

Google Scholar

[20] C. Appino, O. de la Barrière, F. Fiorillo, M. LoBue, C. Ragusa, Classical eddy current losses in soft magnetic composites, J. Appl. Phys. 113 (2013) 17A322 (3 pp. ).

DOI: 10.1063/1.4795744

Google Scholar

[21] J. Barranger, Hysteresis and eddy current losses of a transformer lamination viewed as an application of the Poynting theorem, NASA Technical Note TN D-3114, Washington Nov. (1965).

Google Scholar

[22] C. Appino, G. Bertotti, O. Bottauscio, F. Fiorillo, P. Tiberto, D. Binesti, J. P. Ducreaux, M. Chiampi, M. Repetto, Power losses in thick steel laminations with hysteresis, J. Appl. Phys. 79 (1996) 4575-4577.

DOI: 10.1063/1.361873

Google Scholar

[23] M. De Wulf, L. Dupré, J. Melkebeek, Quasistatic measurements for hysteresis modeling, J. Appl. Phys. 87 (2000) 5239-5241.

DOI: 10.1063/1.373307

Google Scholar

[24] H. Akçay, D. G. Ece, Modeling of hysteresis and power losses in transformer laminations, IEEE Trans. Power Deliv. 18 (2003) 487-492.

DOI: 10.1109/tpwrd.2003.809694

Google Scholar

[25] K. Chwastek, AC loss density component in electrical steels, Phil. Mag. Lett. 90 (2010) 809-817.

Google Scholar

[26] Y. Sakaki and S. Imagi, Relationship among eddy current loss, frequency, maximum flux density and a new parameter concerning the number of domain walls in polycrystalline and amorphous soft magnetic materials, IEEE Trans. Magn. 17 (1981).

DOI: 10.1109/tmag.1981.1061229

Google Scholar

[27] F. de Leon, L. Qaseer, J. Cohen, AC power theory from Poynting theorem: identification of the power components of magnetic saturating and hysteretic circuits, IEEE Trans. Power Deliv. 27 (2012) 1548-1556.

DOI: 10.1109/tpwrd.2012.2188652

Google Scholar

[28] Höganäs AB, Sweden, http: /www. hoganas. com.

Google Scholar

[29] S. E. Zirka, Yu. I. Moroz, P. Marketos, A. J. Moses, Comparison of engineering methods of loss prediction in thin ferromagnetic laminations, J. Magn. Magn. Mater. 320 (2008) 2504-2508.

DOI: 10.1016/j.jmmm.2008.04.083

Google Scholar

[30] A. Boglietti, A. Cavagnino, Iron loss prediction with PWM supply: an overview of proposed methods from an engineering point of view, Electr. Pow. Syst. Res. 80 (2010) 1211-1217.

DOI: 10.1016/j.epsr.2010.03.003

Google Scholar

[31] J. Szczygłowski, P. Kopciuszewski, W. Wilczyński, A. Roman, Energy losses in Fe-based and Co-based amorphous materials, Mater. Sci. Eng. B 75 (2000) 13-16.

DOI: 10.1016/s0921-5107(00)00376-7

Google Scholar