Morphological Study of CdSe Nanocrystals Passivated with a Low Band Gap Rod-Coil Diblock Copolymer for Hybrid Solar Cells

Article Preview

Abstract:

Different nanocomposite materials consisting of semiconducting CdSe nanocrystals (NCs) and a low band gap copolymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b:3.4-b’]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) were prepared, morphologically characterized, and tested in hybrid solar cells. In addition, a PCPDTBT-based rod-coil diblock copolymer was synthesized through a grafting-onto approach and a preliminary evaluation of the morphology of the hybrid nanocomposites with CdSe NCs was performed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-240

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Xue, Perspectives on organic photovoltaics, Polym. Rev. 50 (2010) 411-419.

Google Scholar

[2] D. Celik, M. Krueger, C. Veit, H.F. Schleiermacher, B. Zimmermann, S. Allard, I. Dumsch, U. Scherf, F. Rauscher, P. Niyamakom, Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments, Solar Energy Materials & Solar Cells 98 (2012).

DOI: 10.1016/j.solmat.2011.11.049

Google Scholar

[3] R. A. Segalman, B. McCulloch, S. Kirmayer, J. J. Urban, Block copolymers for organic optoelectronics, Macromolecules 42 (2009) 9205–9216.

DOI: 10.1021/ma901350w

Google Scholar

[4] B. de Boer, U. Stalmach, P. F. Van Hutten, C. Melzer, V. V. Krasnikov, G. Hadziioannou, Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers, Polymer 42 (2001) 9097−9109.

DOI: 10.1016/s0032-3861(01)00388-3

Google Scholar

[5] N. Sary, F. Richard, C. Brochon, N. Leclerc, P. Lévêque, J.N. Audinot, S. Berson, T. Heiser, G. Hadziioannou, R. Mezzenga, A new supramolecular route for using rod-coil block copolymers in photovoltaic applications, Adv. Mater. 22 (2010).

DOI: 10.1002/adma.200902645

Google Scholar

[6] Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, I. Dumsch, S. Allard, U. Scherf, M. Kruger, Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT, Solar Energy Materials & Solar Cells 95 (2011).

DOI: 10.1016/j.solmat.2010.12.041

Google Scholar

[7] A. E. Di Mauro, M. Toscanini, D. Piovani, F. Samperi, M. L. Curri, M. Corricelli, R. L. De Caro, D. Sihiqi, Comparelli, A. Agostiano, S. Destri, M. Striccoli: submitted to Polymer (2014).

DOI: 10.1016/j.eurpolymj.2014.09.010

Google Scholar

[8] S. Zappia, F. Samperi, R. Mendichi, S. Battiato, G. Scavia, S. Destri: submitted to Macromolecules (2014).

Google Scholar

[9] Z. Sun , K. Xiao , J. K. Keum , X. Yu , K. Hong , J. Browning , I. N. Ivanov , J. Chen , J. Alonzo , D. Li , B. G. Sumpter , E. A. Payzant , C. M. Rouleau, D. B. Geohegan, PS-b-P3HT Copolymers as P3HT/PCBM Interfacial compatibilizers for high efficiency photovoltaics, Adv. Mater. 3 (2011).

DOI: 10.1002/adma.201103361

Google Scholar

[10] K. Aissou , J. Shaver , G. Fleury , G. Pécastaings , C. Brochon , C. Navarro , S. Grauby , J. M. Rampnoux , S. Dilhaire , G. Hadziioannou, Nanoscale block copolymer ordering induced by visible interferometric micropatterning: a route towards large scale block copolymer 2D crystals, Adv. Mater. 25 (2013).

DOI: 10.1002/adma.201203254

Google Scholar

[11] B. D. Olsen, R. A. Segalman, Self-assembly of rod-coil block copolymers, Mater. Sci. Eng.R. 62 (2008) 37-66.

DOI: 10.1016/j.mser.2008.04.001

Google Scholar