Several Approaches to Bipolar Oxide Diodes with High Rectification

Article Preview

Abstract:

We report on advances in the fabrication of high quality bipolar heterodiodes with oxideelectrodes. The highest rectification above 1010 is obtained for a structure from a-ZCO/ZnO/ZnO:Alon Al2O3 (a-ZCO: amorphous ZnCo2O4). Rectification better than 106, a value larger than reportedfor all previous attempts, is obtained for our a-ZCO/a-ZTO (a-ZTO: amorphous zinc tin oxide), a-NiO/ZnO and CuI/ZnO diodes. The ZCO/ZnO has been used as gate in JFETs with ZnO as channel.The bipolar diodes open the field of oxide semiconductor electronics to applications in photovoltaics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

252-259

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Minami, Semicond. Sci. Technol. 20, S35 (2005).

Google Scholar

[2] Transparent Conductive Zinc Oxide, K. Ellmer, A. Klein, B. Rech, eds., Springer Series in Materials Science Vol. 104 (Springer, Berlin, 2008).

DOI: 10.1007/978-3-540-73612-7

Google Scholar

[3] H. Frenzel, A. Lajn and M. Grundmann, phys. stat. sol. RRL 7, 605 (2013).

Google Scholar

[4] Zh. Zhang, H. von Wenckstern, M. Schmidt and M. Grundmann, Appl. Phys. Lett. 99, 083502 (2011).

Google Scholar

[5] Zh. Zhang, H. von Wenckstern and M. Grundmann, Appl. Phys. Lett. 103, 171111 (2013).

Google Scholar

[6] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488 (2004).

Google Scholar

[7] F.-L. Schein, H. von Wenckstern, H. Frenzel and M. Grundmann, IEEE Electron Device Letters 33, 676 (2012).

Google Scholar

[8] H. von Wenckstern, R. Pickenhain, H. Schmidt, M. Brandt, G. Biehne, M. Lorenz and M. Grundmann, Appl. Phys. Lett. 89, 092122 (2006).

DOI: 10.1063/1.2335798

Google Scholar

[9] F.-L. Schein, M. Winter, T. Böntgen, H. von Wenckstern and M. Grundmann, Appl. Phys. Lett. 104, 022104 (2014).

DOI: 10.1063/1.4861648

Google Scholar

[10] M. Grundmann, F.-L. Schein, M. Lorenz, T. Böntgen, J. Lenzner and H. von Wenckstern, phys. stat. sol. (a) 210, 1671 (2013).

DOI: 10.1002/pssa.201329349

Google Scholar

[11] F.-L. Schein, H. von Wenckstern and M. Grundmann: Appl. Phys. Lett. 102, 092109 (2013).

Google Scholar

[12] P. Schlupp, H. von Wenckstern, M. Grundmann, Proc. Mat. Res. Soc. 1633, 101 (2014).

Google Scholar

[13] S. Müller, H. von Wenckstern, O. Breitenstein, J. Lenzner and M. Grundmann IEEE Trans. Electron Devices 59, 536 (2012)

DOI: 10.1109/ted.2011.2177984

Google Scholar

[14] M.-J. Lee, S. Seo, D.-C. Kim, S.-E. Ahn, D.H. Seo, I.-K. Yoo, I.-G. Baek, D.-S. Kim, I.-S. Byun, S.-H. Kim, I.-R. Hwang, J.-S. Kim, S.-H. Jeon and B.H. Park, Adv. Mater. 19, 73 (2007).

DOI: 10.1002/adma.200601025

Google Scholar

[15] J.D. Levine, Solid-State Electronics 17, 1083 (1974).

Google Scholar

[16] V.A. Johnson, R.N. Smith and H.J. Yearian, J. Appl. Phys. 21, 283 (1950).

Google Scholar