[1]
N.S. Lewis, Toward cost-effective solar energy use, Science, 315 (2007) 798–801.
DOI: 10.1126/science.1137014
Google Scholar
[2]
J. Barber, Biological solar energy, Phil. Trans. R. Soc. A, 365 (2007) 1007-1023.
Google Scholar
[3]
G.D. Scholes, G. R. Fleming, A. Olaya-Castro, R. van Grondelle, Nat. Chem. 3 (2001) 763–774.
Google Scholar
[4]
G.R. Fleming, R. van Grondelle, Femtosecond spectroscopy of photosynthetic light-harvesting systems, Curr. Opin. Struct. Biol., 7 (1997) 738–748.
DOI: 10.1016/s0959-440x(97)80086-3
Google Scholar
[5]
Y.F. Li, W. Zhou, R.E. Blankenship, J.P. Allen, Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum, J. Mol. Biol. 271 (1997) 456–471.
DOI: 10.1006/jmbi.1997.1189
Google Scholar
[6]
H. Hossein-Nejad, A. Olaya-Castro, G.D. Scholes, Phonon-mediated path-interference in electronic energy transfer, J. Chem. Phys., 136 (2012) 024112 1-9.
DOI: 10.1063/1.3675844
Google Scholar
[7]
E. Collini, G.D. Scholes, Electronic and Vibrational Coherences in Resonance Energy Transfer along MEH-PPV Chains at Room Temperature, J. Phys. Chem. A 113 (2009) 4223-4241.
DOI: 10.1021/jp810757x
Google Scholar
[8]
G.D. Scholes, T. Mirkovic, D.B. Turner, F. Fassioli, A. Buchleitner, Solar light harvesting by energy transfer: from ecology to coherence, Energy Environ. Sci., 5 (2012) 9374-9393.
DOI: 10.1039/c2ee23013e
Google Scholar
[9]
E. Collini, Coherent Electronic Energy Transfer in Biological and Artificial Multichromophoric Systems, in: B. Pignataro (Ed. ), Discovering the Future of Molecular Sciences, Wiley-VCH, Weinheim, 2014, pp.91-115.
DOI: 10.1002/9783527673223.ch4
Google Scholar
[10]
G.D. Scholes, Quantum-coherent electronic energy transfer: Did Nature think of it first?, J. Phys. Chem. Lett. 1 (2010) 2-8.
Google Scholar
[11]
E.W. Montroll, Random Walks on Lattices. III. Calculation of First‐Passage Times with Application to Exciton Trapping on Photosynthetic Units, J. Math. Phys., 10 (1969) 753-765.
DOI: 10.1063/1.1664902
Google Scholar
[12]
G.S. Engel, T. R Calhoun, E.L. Read, T. -K Ahn, T. Mancal, Y. -C. Cheng, R.E. Blankenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature 446 (2007) 782-786.
DOI: 10.1038/nature05678
Google Scholar
[13]
E. Schrödinger, What is Life? The Physical Aspect of the Living Cell, Cambridge University Press, Cambridge, (1944).
Google Scholar
[14]
N. Lambert, Y. -N. Chen, Y. -C. Cheng, C. -M. Li, G. -Y. Chen, F. Nori, Quantum Biology, Nat. Phys. 9 (2013) 10-18.
Google Scholar
[15]
E. Collini, Spectroscopic signatures of quantum-coherent energy transfer, Chem. Soc. Rev. 42 (2013) 4932-4947.
DOI: 10.1039/c3cs35444j
Google Scholar
[16]
M. Cho, Two-dimensional Optical Spectroscopy, CRC Press, New York, (2009).
Google Scholar
[17]
C. Dorrer, N. Belabas, J. -P. Likforman, M. Joffre, Spectral resolution and sampling issues in Fourier-transform spectral interferometry, J. Opt. Soc. Am. B 17 (2009) 1795-1802.
DOI: 10.1364/josab.17.001795
Google Scholar
[18]
E.L. Read, G.S. Schlau-Cohen, G.S. Engel, T. Georgiou, M.Z. Papiz, G.R. Fleming, Pigment organization and energy level structure in light-harvesting complex 4: insights from two-dimensional electronic spectroscopy, J. Phys. Chem. B 113 (2009).
DOI: 10.1021/jp809713q
Google Scholar
[19]
Y.C. Cheng, G.R. Fleming, Coherence Quantum Beats in Two-Dimensional Electronic Spectroscopy, J. Phys. Chem. A 112 (2008) 4254- 4260.
DOI: 10.1021/jp7107889
Google Scholar
[20]
A. Ishizaki, T.R. Calhoun, G.S. Schlau-Cohen, G.R. Fleming, Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer, Phys. Chem. Chem. Phys. 12 (2010) 7319-7337.
DOI: 10.1039/c003389h
Google Scholar
[21]
T. Mirkovic, A.B. Doust, J. Kim, K.E. Wilk, C. Curutchet, B. Mennucci, R. Cammi, P.M.G. Curmi, G.D. Scholes, Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645, Photochem. Photobiol. Sci. 6 (2007) 964-975.
DOI: 10.1039/b704962e
Google Scholar
[22]
E. Collini, C. Y. Wong, K. E. Wilk, P.M.G. Curmi, P. Brumer, G.D. Scholes, Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature, Nature 463 (2010) 644-647.
DOI: 10.1038/nature08811
Google Scholar
[23]
D.B. Turner, R. Dinshaw, K. -K. Lee, M.S. Belsley, K.E. Wilk, P.M.G. Curmi, G.D. Scholes, Quantitative investigations of quantum coherence for a light- harvesting protein at conditions simulating photosynthesis, Phys. Chem. Chem. Phys. 14 (2012).
DOI: 10.1039/c2cp23670b
Google Scholar
[24]
G.H. Richards, K.E. Wilk, P.M.G. Curmi, H.M. Quiney, J.A. Davis, Coherent Vibronic Coupling in Light-Harvesting Complexes from Photosynthetic Marine Algae, J. Phys. Chem. Lett. 3 (2012) 272-277.
DOI: 10.1021/jz201600f
Google Scholar
[25]
D.B. Turner, K.E. Wilk, P.M.G. Curmi, G.D. Scholes, Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy, J. Phys. Chem. Lett. 2 (2011) 1904–(1911).
DOI: 10.1021/jz200811p
Google Scholar
[26]
E. Collini, Differences among coherent dynamics in evolutionary related light-harvesting complexes: evidence for subtle quantum-mechanical strategies for energy transfer optimization, Proc. SPIE 8440 (2012) Quantum Optics II, 84400.
DOI: 10.1117/12.927850
Google Scholar
[27]
S.J. Harrop, K.E. Wilk, P.C. Arpin, R. Dinshaw, E. Collini, T. Mirkovic, C.Y. Teng, B. Green, K. Hoef-Emden, R. Hiller, G.D. Scholes, P.M.G. Curmi: submitted to Proc. Nat. Ac. Sci. (2014).
DOI: 10.1073/pnas.1402538111
Google Scholar
[28]
M. del Rey, A.W. Chin, S.F. Huelga, M.B. Plenio, Exploiting Structured Environments for Efficient Energy Transfer: The Phonon Antenna Mechanism, J. Phys. Chem. Lett. 4 (2013) 903–907.
DOI: 10.1021/jz400058a
Google Scholar
[29]
D. Gust, T.A. Moore, A.L. Moore, Solar Fuels via Artificial Photosynthesis, Acc. Chem. Res. 42 (2009) 1890–1898.
DOI: 10.1021/ar900209b
Google Scholar
[30]
V. Balzani, A. Credi, M. Venturi, Photochemical Conversion of Solar Energy, ChemSusChem 1 (2008) 26–58.
DOI: 10.1002/cssc.200700087
Google Scholar
[31]
S.F. Huelga, M.B. Plenio, Vibrations, quanta and biology, Contemporary Physics 54 (2013) 181-207.
DOI: 10.1080/00405000.2013.829687
Google Scholar