Coherent Electronic Energy Transfer and Organic Photovoltaics

Article Preview

Abstract:

One of the most surprising and significant advances in the study of the photosynthetic light-harvesting process is the discovery that the electronic energy transfer (ET) might involve long-lived electronic coherences, also at physiologically relevant conditions. This means that the transfer of energy among different chromophores does not follow the expected classical incoherent hopping mechanism, but that quantum-mechanical laws can steer the migration of energy. The implications of such quantum transport regime, although currently under debate, might have a tremendous impact in our way to think about natural and artificial light-harvesting and suggest new directions for the development of artificial devices for the efficient capture and re-use of solar energy. Central to these discoveries has been the development of new ultrafast spectroscopic techniques, in particular two-dimensional electronic spectroscopy, which is now the primary tool to obtain clear and definitive experimental proof of such effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-234

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.S. Lewis, Toward cost-effective solar energy use, Science, 315 (2007) 798–801.

DOI: 10.1126/science.1137014

Google Scholar

[2] J. Barber, Biological solar energy, Phil. Trans. R. Soc. A, 365 (2007) 1007-1023.

Google Scholar

[3] G.D. Scholes, G. R. Fleming, A. Olaya-Castro, R. van Grondelle, Nat. Chem. 3 (2001) 763–774.

Google Scholar

[4] G.R. Fleming, R. van Grondelle, Femtosecond spectroscopy of photosynthetic light-harvesting systems, Curr. Opin. Struct. Biol., 7 (1997) 738–748.

DOI: 10.1016/s0959-440x(97)80086-3

Google Scholar

[5] Y.F. Li, W. Zhou, R.E. Blankenship, J.P. Allen, Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum, J. Mol. Biol. 271 (1997) 456–471.

DOI: 10.1006/jmbi.1997.1189

Google Scholar

[6] H. Hossein-Nejad, A. Olaya-Castro, G.D. Scholes, Phonon-mediated path-interference in electronic energy transfer, J. Chem. Phys., 136 (2012) 024112 1-9.

DOI: 10.1063/1.3675844

Google Scholar

[7] E. Collini, G.D. Scholes, Electronic and Vibrational Coherences in Resonance Energy Transfer along MEH-PPV Chains at Room Temperature, J. Phys. Chem. A 113 (2009) 4223-4241.

DOI: 10.1021/jp810757x

Google Scholar

[8] G.D. Scholes, T. Mirkovic, D.B. Turner, F. Fassioli, A. Buchleitner, Solar light harvesting by energy transfer: from ecology to coherence, Energy Environ. Sci., 5 (2012) 9374-9393.

DOI: 10.1039/c2ee23013e

Google Scholar

[9] E. Collini, Coherent Electronic Energy Transfer in Biological and Artificial Multichromophoric Systems, in: B. Pignataro (Ed. ), Discovering the Future of Molecular Sciences, Wiley-VCH, Weinheim, 2014, pp.91-115.

DOI: 10.1002/9783527673223.ch4

Google Scholar

[10] G.D. Scholes, Quantum-coherent electronic energy transfer: Did Nature think of it first?, J. Phys. Chem. Lett. 1 (2010) 2-8.

Google Scholar

[11] E.W. Montroll, Random Walks on Lattices. III. Calculation of First‐Passage Times with Application to Exciton Trapping on Photosynthetic Units, J. Math. Phys., 10 (1969) 753-765.

DOI: 10.1063/1.1664902

Google Scholar

[12] G.S. Engel, T. R Calhoun, E.L. Read, T. -K Ahn, T. Mancal, Y. -C. Cheng, R.E. Blankenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature 446 (2007) 782-786.

DOI: 10.1038/nature05678

Google Scholar

[13] E. Schrödinger, What is Life? The Physical Aspect of the Living Cell, Cambridge University Press, Cambridge, (1944).

Google Scholar

[14] N. Lambert, Y. -N. Chen, Y. -C. Cheng, C. -M. Li, G. -Y. Chen, F. Nori, Quantum Biology, Nat. Phys. 9 (2013) 10-18.

Google Scholar

[15] E. Collini, Spectroscopic signatures of quantum-coherent energy transfer, Chem. Soc. Rev. 42 (2013) 4932-4947.

DOI: 10.1039/c3cs35444j

Google Scholar

[16] M. Cho, Two-dimensional Optical Spectroscopy, CRC Press, New York, (2009).

Google Scholar

[17] C. Dorrer, N. Belabas, J. -P. Likforman, M. Joffre, Spectral resolution and sampling issues in Fourier-transform spectral interferometry, J. Opt. Soc. Am. B 17 (2009) 1795-1802.

DOI: 10.1364/josab.17.001795

Google Scholar

[18] E.L. Read, G.S. Schlau-Cohen, G.S. Engel, T. Georgiou, M.Z. Papiz, G.R. Fleming, Pigment organization and energy level structure in light-harvesting complex 4: insights from two-dimensional electronic spectroscopy, J. Phys. Chem. B 113 (2009).

DOI: 10.1021/jp809713q

Google Scholar

[19] Y.C. Cheng, G.R. Fleming, Coherence Quantum Beats in Two-Dimensional Electronic Spectroscopy, J. Phys. Chem. A 112 (2008) 4254- 4260.

DOI: 10.1021/jp7107889

Google Scholar

[20] A. Ishizaki, T.R. Calhoun, G.S. Schlau-Cohen, G.R. Fleming, Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer, Phys. Chem. Chem. Phys. 12 (2010) 7319-7337.

DOI: 10.1039/c003389h

Google Scholar

[21] T. Mirkovic, A.B. Doust, J. Kim, K.E. Wilk, C. Curutchet, B. Mennucci, R. Cammi, P.M.G. Curmi, G.D. Scholes, Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645, Photochem. Photobiol. Sci. 6 (2007) 964-975.

DOI: 10.1039/b704962e

Google Scholar

[22] E. Collini, C. Y. Wong, K. E. Wilk, P.M.G. Curmi, P. Brumer, G.D. Scholes, Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature, Nature 463 (2010) 644-647.

DOI: 10.1038/nature08811

Google Scholar

[23] D.B. Turner, R. Dinshaw, K. -K. Lee, M.S. Belsley, K.E. Wilk, P.M.G. Curmi, G.D. Scholes, Quantitative investigations of quantum coherence for a light- harvesting protein at conditions simulating photosynthesis, Phys. Chem. Chem. Phys. 14 (2012).

DOI: 10.1039/c2cp23670b

Google Scholar

[24] G.H. Richards, K.E. Wilk, P.M.G. Curmi, H.M. Quiney, J.A. Davis, Coherent Vibronic Coupling in Light-Harvesting Complexes from Photosynthetic Marine Algae, J. Phys. Chem. Lett. 3 (2012) 272-277.

DOI: 10.1021/jz201600f

Google Scholar

[25] D.B. Turner, K.E. Wilk, P.M.G. Curmi, G.D. Scholes, Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy, J. Phys. Chem. Lett. 2 (2011) 1904–(1911).

DOI: 10.1021/jz200811p

Google Scholar

[26] E. Collini, Differences among coherent dynamics in evolutionary related light-harvesting complexes: evidence for subtle quantum-mechanical strategies for energy transfer optimization, Proc. SPIE 8440 (2012) Quantum Optics II, 84400.

DOI: 10.1117/12.927850

Google Scholar

[27] S.J. Harrop, K.E. Wilk, P.C. Arpin, R. Dinshaw, E. Collini, T. Mirkovic, C.Y. Teng, B. Green, K. Hoef-Emden, R. Hiller, G.D. Scholes, P.M.G. Curmi: submitted to Proc. Nat. Ac. Sci. (2014).

DOI: 10.1073/pnas.1402538111

Google Scholar

[28] M. del Rey, A.W. Chin, S.F. Huelga, M.B. Plenio, Exploiting Structured Environments for Efficient Energy Transfer: The Phonon Antenna Mechanism, J. Phys. Chem. Lett. 4 (2013) 903–907.

DOI: 10.1021/jz400058a

Google Scholar

[29] D. Gust, T.A. Moore, A.L. Moore, Solar Fuels via Artificial Photosynthesis, Acc. Chem. Res. 42 (2009) 1890–1898.

DOI: 10.1021/ar900209b

Google Scholar

[30] V. Balzani, A. Credi, M. Venturi, Photochemical Conversion of Solar Energy, ChemSusChem 1 (2008) 26–58.

DOI: 10.1002/cssc.200700087

Google Scholar

[31] S.F. Huelga, M.B. Plenio, Vibrations, quanta and biology, Contemporary Physics 54 (2013) 181-207.

DOI: 10.1080/00405000.2013.829687

Google Scholar