Effect of Temperature on Phase Transition of Ni-Co Oxide and its Application on Optoelectronics

Article Preview

Abstract:

Ni-Co thin films were prepared on glass substrate by RF magnetron sputtering technique. Post-deposition annealing of Ni-Co film in oxygen atmosphere was found to improve film structure and electrical characteristics. The correlation between annealing conditions and the physical structure of the films was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-Vis-NIR spectrophotometer. The lowest resistivity was observed after annealing a sputter-deposited Ni-Co film at 600 °C for 5h. The transmittance showed more than 85% in the infrared range. The preferred annealing condition has been found to improve Ni-Co film characteristics for transparent conducting material applications.Keywords: Ni-Co film, annealing, phase transition

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-251

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Kiriakidis, Thin Solid Films 518/4 (2009) 1025.

Google Scholar

[2] J. Muller, B. Rech, J. Springer, M. Vanecek, Sol Energy 77/6 (2004) 917.

Google Scholar

[3] S.Y. Tsai, M.H. Hon, Y.M. Lu, Solid State Electron 63/1 (2011) 37.

Google Scholar

[4] A. Abduev, A. Akhmedov, A. Asvarov, Idmc'07: Proceedings of the International Display Manufacturing Conference 2007 (2007) 625.

Google Scholar

[5] J.J. Lu, S.Y. Tsai, Y.M. Lu, T.C. Lin, K.J. Gan, Solid State Commun 149/47-48 (2009) 2177.

Google Scholar

[6] H.Y. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur, A.B. Yankovich, A.V. Kvit, P.M. Voyles, H. Morkoc, J Appl Phys 111/10 (2012).

Google Scholar

[7] M. Hamdani, J.F. Koenig, P. Chartier, J Appl Electrochem 18/4 (1988) 561.

Google Scholar

[8] J. Haenen, W. Visscher, E. Barendrecht, J Electroanal Chem 208/2 (1986) 297.

Google Scholar

[9] J. Haenen, W. Visscher, E. Barendrecht, J Electroanal Chem 208/2 (1986) 323.

Google Scholar

[10] R.R. Owings, P.H. Holloway, G.J. Exarhos, C.F. Windisch, Surf Interface Anal 37/4 (2005) 424.

Google Scholar

[11] J. Yang, J.B. Li, H. Lin, X.Z. Yang, X.G. Tong, G.F. Guo, J Appl Electrochem 36/8 (2006) 945.

Google Scholar

[12] M. Elbaydi, S.K. Tiwari, R.N. Singh, J.L. Rehspringer, P. Chartier, J.F. Koenig, G. Poillerat, J Solid State Chem 116/1 (1995) 157.

Google Scholar

[13] M.C. Liu, L.B. Kong, C. Lu, X.M. Li, Y.C. Luo, L. Kang, X.H. Li, F.C. Walsh, J Electrochem Soc 159/8 (2012) A1262.

Google Scholar

[14] R.N. Singh, M. Hamdani, J.F. Koenig, G. Poillerat, J.L. Gautier, P. Chartier, J Appl Electrochem 20/3 (1990) 442.

Google Scholar

[15] I. Serebrennikova, V.I. Birss, J Electrochem Soc 144/2 (1997) 566.

Google Scholar

[16] J. Wollenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Bottner, I. Eisele, Sensor Actuat B-Chem 93/1-3 (2003) 442.

Google Scholar

[17] T.D. Kang, H.S. Lee, H. Lee, J Korean Phys Soc 50/3 (2007) 632.

Google Scholar