High Critical Currents in Single Grain YBa2Cu3Oy Bulk Superconductors Produced by Infiltration-Growth

Article Preview

Abstract:

Bulk YBa2Cu3Oy “Y-123” superconductors with high critical current density (Jc) have been grown by infiltrating a Ba3Cu5Oy “Y-035” liquid source into a Y2BaCuO5 “Y-211” precursor block. Magnetization measurements showed that similar Tc (onset) values and large variation in self-field critical currents were observed when the samples were isothermally grown at different temperatures. We then adapted slow cooling process for the samples 27 mm in diameter and 5 mm in thickness using the growth profile which was optimized on the basis of isothermal growth conditions. The specimens cut from various locations of a large bulk material showed the uniform and sharp superconducting transition with Tc (onset) around 93.2 K. Jc values at 77 K and 0T was in the range of 150 - 175 kA/cm2. Such high Jc values could be obtained without refining the particle size of Y-211 secondary phase. Atomic force microscopy measurements revealed that uniform nanosized secondary Y-211 particles are embedded in the Y-123 matrix, which led to a dramatic improvement of the critical current performance at 77 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-185

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Salama, F.D. Lee, Supercond. Sci. Technol. 7 (1994) 177-193.

Google Scholar

[2] D.A. Cardwell, Mater. Sci. Eng. B 53 (1998) 1-10.

Google Scholar

[3] S. Jin, C.S. Richard, H. T. Thomas, Fabrication of oxide superconductors by melt growth method. US5011823 (1991).

Google Scholar

[4] M. Muralidhar, M. Jirsa, M. Tomita, Journal of Recent Patents on Material Science 25 (2012) 4-24.

Google Scholar

[5] M. Murakami, N. Sakai, T. Higuchi, SI. Yoo, Supercond. Sci. Technol. 9 (1996) 1015-1032.

Google Scholar

[6] M. Muralidhar, HS. Chauhan, T. Saitoh, K. Kamada, K. Segawa, M. Murakami, Supercond. Sci & Technol., 10 (1997) 663-668.

DOI: 10.1088/0953-2048/10/9/006

Google Scholar

[7] M. Muralidhar, K. Suzuki, Y. Fukumoto, A. Ishihara, M. Tomita, IEEE Trans. Appl. Supercond. 21 (2011) 2702.

Google Scholar

[8] M. Tomita, M. Murakami 421 (2003) 517-520.

Google Scholar

[9] E. Sudhakar Reddy, T. Rajasekharan. Supercond. Sci. Technol., 11 (1998) 523-534.

Google Scholar

[10] H. Cao, N. Moutalbi, C. Harnois, R. Hu, J. Li, L. Zhou, J. G. Noudem, Physica C 470 (2010) 68-74.

DOI: 10.1016/j.physc.2009.10.008

Google Scholar

[11] S. Pavan Kumar Naik, N. Devendra Kumar, P. Missak Swarup Raju, T. Rajasekharan, V. Seshubai, Physica C 487 (2013) 72-76.

DOI: 10.1016/j.physc.2013.01.008

Google Scholar

[12] A. Mahmood, B-H. Jun, Y-H. Han, C-J. Kim, Supercond. Sci. Technol., 23 (2010) 065005 (7pp).

Google Scholar

[13] K. Nakazato, M. Muralidhar, M. R. Koblischka, M. Murakami, J. of Cryogenics, (2014) at press.

Google Scholar

[14] D.X. Chen, R.B. Goldfarb, J. Appl. Phys. 66 (1989) 2489-2500.

Google Scholar

[15] M.R. Koblischka, M. Muralidhar, M. Murakami, Appl. Phys. Lett., 73 (1998) 2351-2353.

Google Scholar

[16] N. Hari Babu, Y.H. Shi, A.R. Dennis, S.K. Pathak, D.A. Cardwell, IEEE Trans. Appl. Supercond. 21 (2011) 2701-2704.

DOI: 10.1109/tasc.2010.2101574

Google Scholar