Development of Density Functional Theory for Plasmon-Assisted Superconductivity

Article Preview

Abstract:

A new scheme of density functional theory (DFT) for unconventional superconductivity is reviewed.To include the effect of charge fluctuations such as low-energy plasmons or excitons, we extendthe conventional formalism of superconducting DFT where the dynamical structure of the screened Coulomb interaction is neglected.We applied the present method to fcc Li under high pressure. We show that the agreement between thetheory and experiment is considerably improved. The present result indicates that plasmons cancooperate with phonons and enhance the pairing instability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

186-195

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Hohenberg and W. Kohn, Phys. Rev., 136 B864 (1964).

Google Scholar

[2] W. Kohn and L. J. Sham, Phys. Rev., 140 A1133 (1965).

Google Scholar

[3] L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. Lett. 60, 2430 (1988).

Google Scholar

[4] M. Lüders, M. A. L. Marques, N. N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda, and E. K. U. Gross, Phys. Rev. B 72, 024545 (2005).

DOI: 10.1103/physrevb.72.024546

Google Scholar

[5] M. A. L. Marques, M. Lüders, N. N. Lathiotakis, G. Profeta, A. Floris, L. Fast, A. Continenza, E. K. U. Gross, and S. Massidda, Phys. Rev. B 72, 024546 (2005).

DOI: 10.1103/physrevb.72.024546

Google Scholar

[6] A. Floris, G. Profeta, N. N. Lathiotakis, M. Lüders, M. A. L. Marques, C. Franchini, E. K. U. Gross, A. Continenza, and S. Massidda, Phys. Rev. Lett. 94, 037004 (2005).

DOI: 10.1103/physrevlett.96.047003

Google Scholar

[7] G. Profeta, C. Franchini, N. N. Lathiotakis, A. Floris, A. Sanna, M. A. L. Marques, M. Lüders, S. Massidda, E. K. U. Gross, and A. Continenza, Phys. Rev. Lett. 96, 047003 (2006).

DOI: 10.1103/physrevlett.96.047003

Google Scholar

[8] A. Sanna, G. Profeta, A. Floris, A. Marini, E. K. U. Gross, and S. Massidda, Phys. Rev. B 75, 020511(R) (2007).

Google Scholar

[9] C. Bersier, A. Floris, A. Sanna, G. Profeta, A. Continenza, E. K. U. Gross, and S. Massidda, Phys. Rev. B 79, 104503 (2009).

Google Scholar

[10] A. Sanna, C. Franchini, A. Floris, G. Profeta, N. N. Lathiotakis, M. Lüders, M. A. L. Marques, E. K. U. Gross, A. Continenza, and S. Massidda, Phys. Rev. B 73, 144512 (2006).

DOI: 10.1103/physrevb.73.144512

Google Scholar

[11] P. Cudazzo, G. Profeta, A. Sanna, A. Floris, A. Continenza, S. Massidda, and E. K. U. Gross, Phys. Rev. Lett. 100, 257001 (2008).

DOI: 10.1103/physrevlett.101.029901

Google Scholar

[12] R. Akashi and R. Arita, Phys. Rev. B 88, 054510 (2013).

Google Scholar

[13] R. Akashi, K. Nakamura, R. Arita, and M. Imada, Phys. Rev. B 86, 054513 (2012).

Google Scholar

[14] R. Akashi and R. Arita, Phys. Rev. B 88, 014514 (2013).

Google Scholar

[15] R. Akashi and R. Arita, Phys. Rev. Lett. 111, 057006 (2013).

Google Scholar

[16] R. Akashi and R. Arita, to appear in J. Phys. Soc. Jpn.

Google Scholar

[17] see e. g., J. R. Schrieffer, Theory of superconductivity; Revised Printing, (Westview Press, Colorado, 1971).

Google Scholar

[18] P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

Google Scholar

[19] Y. Takada, J. Phys. Soc. Jpn. 45, 786 (1978).

Google Scholar

[20] Y. Takada, J. Phys. Soc. Jpn. 49, 1267 (1980).

Google Scholar

[21] Y. Takada, J. Phys. Soc. Jpn, 51, 63 (1982).

Google Scholar

[22] Y. Takada, J. Phys. Soc. Jpn, 78, 013703 (2009).

Google Scholar

[23] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

Google Scholar

[24] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

Google Scholar

[25] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009).

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[26] All the calculations were carried out within the local-density approximation [23, 24] using Quantum Espresso package.

Google Scholar

[27] K. Shimizu, H. Ishikawa, D. Takao, T. Yagi, and K. Amaya, Nature (London) 419, 597 (2002).

Google Scholar

[28] V.V. Struzhkin, M. I. Eremets, W. Gan, H. K. Mao, and R. J. Hemley, Science 298, 1213 (2002).

Google Scholar

[29] S. Deemyad and J. S. Schilling, Phys. Rev. Lett. 91, 167001 (2003).

Google Scholar

[30] T. H. Lin and K. J. Dunn, Phys. Rev. B 33, 807 (1986).

Google Scholar

[31] Bazhirov et al., (T. Bazhirov, J. Noffsinger, and M. L. Cohen, PRB 82, 184509 (2010).

Google Scholar