Fabrication of MgB2 Bulk Magnets with High Critical Currents

Article Preview

Abstract:

We report on the fabrication and characterization of disk-shaped bulk MgB2 superconductors with high performance as superconducting bulk magnets. Several samples of diameters 20 mm, 30 mm and 40 mm were fabricated using a solid state reaction in pure Ar atmosphere at 775°C for 3h. The magnetization measurements confirmed that all the samples exhibited a sharp superconducting transition with Tc (onset) at around 38.5 K. The samples showed respective critical current density (Jc) values of 176 kA cm-2 and 55 kA cm-2 at 20 K in self field and 1T. The Jc values increased further to 250 kA cm-2 and 100 kA cm-2 with decreasing temperature down to 10 K. MgB2 samples 20 mm and 30 mm in diameter and 7 mm in thickness exhibited trapped field values of 1.15 T and 1.3 T at 25 K, respectively. Microstructural observations with scanning electron microscopy (SEM) revealed that the samples are highly porous. And hence, continuing development of large-sized bulk MgB2 with higher density will lead to promising industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-201

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Muralidhar, A. Ishihara, K. Suzuki, Y. Fukumoto, Y. Yamamoto, and M. Tomita, Physica C 494 (2013) 85-88.

Google Scholar

[2] R.V. Viznichenko, A. A. Kordyuk, G. Fuchs, K. Nenkov, K. H. Müller, T.A. Prikhna, and W. Gawalek, Appl. Phys. Lett. 83 (2003) 4360-4362.

DOI: 10.1063/1.1629148

Google Scholar

[3] G. Giunchi, Int. J. Mod. Phys. B 17 (2003) 453-460.

Google Scholar

[4] T. Naito, T. Sasaki, and H. Fujishiro, Supercond. Sci. Technol. 25 (2012) 095012 (6pp).

Google Scholar

[5] A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii, K. Kishio, Supercond. Sci. Technol. 18 (2005) 116-119.

Google Scholar

[6] C. Buzea, T. Yamashita, Supercond. Sci. Technol., 14 (2001) R11-R27.

Google Scholar

[7] K. Vinod, R G. Abhilash Kumar, and U. Syamaprasad, Supercond. Sci. Technol. 20 (2007) R1-R13.

Google Scholar

[8] M. Murakami, Int. J. Appl. Ceram. Technol. 4 (2007) 225-241.

Google Scholar

[9] J. H. Kim, S. Zhou, M. S. A. Hossain, A. V. Pan, and S. X. Dou, Appl. Phys. Lett. 89 (2006) 142505-142507.

Google Scholar

[10] J. H. Kim, Y. U. Heo, A. Matsumoto, H. Kumakura, M. Rindfleisch, M. Tomsic, and S. X. Dou, Supercond. Sci. Technol. 23 (2010) 075014 (7pp).

DOI: 10.1088/0953-2048/23/7/075014

Google Scholar

[11] Z. S. Gao, Y. W. Ma, X. P. Zhang, D. L. Wang, Z. G. Yu, H. Yang, H. H. Wen, and E. Mossang, J. Appl. Phys. 102 (2007) 013914 (4pp).

Google Scholar

[12] B. H. Jun, Y. J. Kim, K. S. Tam, and C. J. Kim, Supercond. Sci. Technol. 21 (2008) 105006 (5pp).

Google Scholar

[13] J. H. Kim, X. Xu, M. S. A. Hossain, D. Q. Shi, Y. Zhao, X. L. Wang, S. X. Dou, S. Choi, and T. Kiyoshi, Appl. Phys. Lett. 92 (2008) 042506 (3pp).

Google Scholar

[14] N. Ojha, V K. Malik, R. Singla, C. Bernhard and G D. Varma, Supercond. Sci. Technol. 23 (2010) 045005.

Google Scholar

[15] N. Ojiha, V K. Malik, C. Bernhard and G D. Varma, Physica C 469 (2009) 846.

Google Scholar

[16] Z. Gao, D. Wang, X. Zhang, Y. Ma, S. Awaji, G. Nishijima, K. Watanabe, and R. Flükiger, Supercond. Sci. Technol. 22 (2009) 015027.

Google Scholar

[17] D. X. Chen, and R. B. Goldfarb, J. Appl. Phys. 66 (1989) 2489-2500.

Google Scholar

[18] C F. Liu, G. Yan, S J. Du, W. Xi, Y. Feng, P X. Zhang, X Z. Wu, and L. Zhou, Physica C 386 (2003) 603-606.

Google Scholar

[19] M. R. Koblischka, A. Wiederhold, M. Muralidhar, K. Inoue, T. Hauet, B. Douine, K. Berger, M. Murakami, and U. Hartmann, presented at INTERMAG 2014, to be published in IEEE Trans. Magn.

DOI: 10.1109/tmag.2014.2323995

Google Scholar

[20] M. Muralidhar, K. Inoue, M. R. Koblischka, M. Tomita, and M. Murakami, J. of Alloys and Compounds, in press (2014).

Google Scholar