Extraction of Filament Properties in Resistive Random Access Memory (ReRAM) Consisting of Binary-Transition-Metal-Oxides

Article Preview

Abstract:

Which parameter dominantly decides the value of time required to reset ReRAM (treset) among possible parameters, the value of a low resistance (RL), voltage to induce reset (Vreset), and temperature to induce reset (Treset) Although to answer this question is important to achieve faster resistive switching, detailed correlations between the parameters are still unclear. In this paper, we extracted treset, Vreset, RL and Treset at the same time by combining two electrical measurements. As a result, we found a clear correlation between Vreset, RL, and Treset, meaning that each parameter can not be controlled independently. Treset increases not only with increasing Vreset but also with increasing RL, which suggests the necessity of introducing ununiformly-shaped filamens and resistive switching takes place at the narrowing part of the filament.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-90

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. -S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. -S. Kim, J. S. Choi, and B. H. Park, Appl. Phys. Lett. 85, 5655 (2004).

DOI: 10.1063/1.1831560

Google Scholar

[2] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. 98, 033715 (2005).

DOI: 10.1063/1.2001146

Google Scholar

[3] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, IEDM. Tech. Dig., 2008, p.1.

DOI: 10.1109/iedm.2008.4796676

Google Scholar

[4] Y. Sato, K. Kinoshita, M. Aoki, and Y. Sugiyama, Appl. Phys. Lett. 90, 033503 (2007).

Google Scholar

[5] I. G. Beak, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. –S. Suh, J. C. Park, S. O. Park, H.S. Kim, I. K. Yoo, U-In Chung, and J. T. moon, IEDM. Tech. Dig., 2004, p.587.

Google Scholar

[6] C. H. Cheng, C. Y. Tsai, Albert Chin, and F. S. Yeh, IEDM Tech. Dig., 2010, p.19. 4. 1.

Google Scholar

[7] J. Yi, H. Choi, S. Lee, J. Lee, D. Son, S. Lee. S. Hwang, S. Song, J. Park, S. Kim, W. Kim, J. -Y. Kim, S. Lee, J. Moon, J. You, M. Joo, J. Roh, S. Park, S. -W. Chung, J. Lee, and S. -J. Hong, Symp. on VLSI Tech. Dig., 2011, p.48.

DOI: 10.1109/imw.2011.5873243

Google Scholar

[8] Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, and K. Aono, IEDM Tech. Dig., 2011, p.31. 4. 1.

DOI: 10.1109/imw.2012.6213638

Google Scholar

[9] X. Guan, S. Yu, and H. -S. P. Wong, IEEE Trans. Electron Devices 59, 1172 (2012).

Google Scholar

[10] D. Ielmini, F. Nardi, and S. Balatti, IEEE Trans. Electron Devices 59, 2049 (2012).

Google Scholar

[11] Y. Hosoi, Y. Tamai, T. Ohnishi, K. Ishihara, T. Shibuya, Y. Inoue, S. Yamazaki, T. Nakano, S. Ohnishi, N. Awaya, I. H. Inoue, H. Shima, H. Akinaga, H. Takagi, H. Akoh, and Y. Tokura, IEDM Tech. Dig., 2006, p.1.

DOI: 10.1109/iedm.2006.346732

Google Scholar

[12] J. G. Aiken, and A. G. Jordan, J. Phys. Chem. Solids 29, 2153 (1968).

Google Scholar

[13] V. P. Zhuze, and A. I. Shelykh, Fiz. Tverd. Tela. 5, 1756 (1963).

Google Scholar

[14] K. Kinoshita, H. Noshiro, C. Yoshida, Y. Sato, M. Aoki, and Y. Sugiyama, J. Mater. Res. 23, 812 (2008).

Google Scholar

[15] S. Yu, and H. -S. P. Wong, IEEE Electron Device Lett. 31, 1455 (2010).

Google Scholar