[1]
Arrigoni, A., Grillet, A.C., Pelosato, R., Dotelli, G., Beckett, C.T.S., Woloszyn, M., Ciancio, D., 2017. Reduction of rammed earth's hygroscopic performance under stabilisation: an experimental investigation. Build. Environ. 115, 358–367. https://doi.org/10.1016/j.buildenv.2017.01.034.
DOI: 10.1016/j.buildenv.2017.01.034
Google Scholar
[2]
ASTM D1557, 2007. ASTM D1557-07 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort. Annu. B. ASTM Stand. 3, 1–13. https://doi.org/10.1520/D1557-07.1.
Google Scholar
[3]
ASTM D2166/D2166M, 2016. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, in: ASTM International.
Google Scholar
[4]
Aubert, J.E., Fabbri, A., Morel, J.C., Maillard, P., 2013. An earth block with a compressive strength higher than 45 MPa! Constr. Build. Mater. 47, 366–369. https://doi.org/10.1016/j.conbuildmat.2013.05.068.
DOI: 10.1016/j.conbuildmat.2013.05.068
Google Scholar
[5]
Avrami, E., Guillaud, H., Hardy, M., 2008. Terra Literature Review An Overview of Research in Earthen Architecture Conservation undefined-undefined.
Google Scholar
[6]
Aymerich, F., Fenu, L., Meloni, P., 2012. Effect of reinforcing wool fibres on fracture and energy absorption properties of an earthen material. Constr. Build. Mater. 27, 66–72. https://doi.org/10.1016/j.conbuildmat.2011.08.008.
DOI: 10.1016/j.conbuildmat.2011.08.008
Google Scholar
[7]
Bruno, A.W., Gallipoli, D., Perlot, C., Mendes, J., 2017. Mechanical behaviour of hypercompacted earth for building construction. Mater. Struct. Constr. 50. https://doi.org/10.1617/s11527-017-1027-5.
DOI: 10.1617/s11527-017-1027-5
Google Scholar
[8]
Burroughs, S., 2010. Recommendations for the Selection, Stabilization, and Compaction of Soil for Rammed Earth Wall Construction. J. Green Build. 5, 101–114. https://doi.org/10.3992/jgb.5.1.101.
DOI: 10.3992/jgb.5.1.101
Google Scholar
[9]
Champiré, F., Fabbri, A., Morel, J.-C., Wong, H., McGregor, F., 2016. Impact of relative humidity on the mechanical behavior of compacted earth as a building material. Constr. Build. Mater. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.01.027.
DOI: 10.1016/j.conbuildmat.2016.01.027
Google Scholar
[10]
Chauhan, P., El Hajjar, A., Prime, N., Plé, O., 2019. Unsaturated behavior of rammed earth: Experimentation towards numerical modelling. Constr. Build. Mater. 227, 116646. https://doi.org/10.1016/j.conbuildmat.2019.08.027.
DOI: 10.1016/j.conbuildmat.2019.08.027
Google Scholar
[11]
Choi, I.S., Lee, Y.G., Khanal, S.K., Park, B.J., Bae, H.J., 2015. A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl. Energy 140, 65–74. https://doi.org/10.1016/j.apenergy.2014.11.070.
DOI: 10.1016/j.apenergy.2014.11.070
Google Scholar
[12]
Danso, H., Martinson, D.B., Ali, M., Williams, J.B., 2015. Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres. Constr. Build. Mater. 101, 797–809. https://doi.org/10.1016/j.conbuildmat.2015.10.069.
DOI: 10.1016/j.conbuildmat.2015.10.069
Google Scholar
[13]
Fantilli, A.P., Sicardi, S., Dotti, F., 2017. The use of wool as fiber-reinforcement in cement-based mortar. Constr. Build. Mater. 139, 562–569. https://doi.org/10.1016/j.conbuildmat. 2016.10.096.
DOI: 10.1016/j.conbuildmat.2016.10.096
Google Scholar
[14]
Galán-Marín, C., Rivera-Gómez, C., Petric, J., 2010. Clay-based composite stabilized with natural polymer and fibre. Constr. Build. Mater. 24, 1462–1468. https://doi.org/10.1016/ j.conbuildmat.2010.01.008.
DOI: 10.1016/j.conbuildmat.2010.01.008
Google Scholar
[15]
GlobalABC, UNEP, IEA, 2018. 2018 Global Status Report: towards a zero‐emission, efficient and resilient buildings and construction sector 73. https://doi.org/978-3-9818911-3-3.
Google Scholar
[16]
Houben, H. and Guillaud, H., 1994. Earth construction: a comprehensive guide, Habitat International.
Google Scholar
[17]
Keita, I., Sorgho, B., Dembele, C., Plea, M., Zerbo, L., Guel, B., Ouedraogo, R., Gomina, M., Blanchart, P., 2014. Ageing of clay and clay-tannin geomaterials for building. Constr. Build. Mater. 61, 114–119. https://doi.org/10.1016/j.conbuildmat.2014.03.005.
DOI: 10.1016/j.conbuildmat.2014.03.005
Google Scholar
[18]
Losini, A.E., Stampino, P.G., Dotelli, G., Bellotto, M., Grillet, A.C., Caruso, M., Sabbadini, S., Outin, J., 2019. Evaluation of different raw earthen plasters stabilized with lime for bio-building exploitation, Academic Journal of Civil Engineering. https://doi.org/10.26168/icbbm2019.25.
Google Scholar
[19]
Maniatidis, V., Walker, P., 2003. A review of rammed earth construction. Dev. rammed earth UK Hous. 109.
Google Scholar
[20]
Minke, G., 2012. Building with earth. Walter de Gruyter.
Google Scholar
[21]
Moevus, M., Anger, R., Fontaine, L., 2012. Hygro-Thermo-Mechanical Properties of Earthen Materials for Construction : a Literature Review. Terra 2012 1–10.
Google Scholar
[22]
Moody, V., Needles, H.L., 2004. Major Fibers and Their Properties, in: Tufted Carpet. Elsevier, p.35–59. https://doi.org/10.1016/b978-188420799-0.50004-x.
DOI: 10.1016/b978-188420799-0.50004-x
Google Scholar
[23]
Morel, J.C., Mesbah, A., Oggero, M., Walker, P., 2001. Building houses with local materials: means to drastically reduce the environmental impact of construction. Build. Environ. https://doi.org/https://doi.org/10.1016/S0360-1323(00)00054-8.
DOI: 10.1016/s0360-1323(00)00054-8
Google Scholar
[24]
Petek, B., Logar, R.M., 1234. Management of waste sheep wool as valuable organic substrate in European Union countries. J. Mater. Cycles Waste Manag. 23, 44–54. https://doi.org/10.1007/s10163-020-01121-3.
DOI: 10.1007/s10163-020-01121-3
Google Scholar
[25]
Rahman, I.A., 2019. Investigation of suction and shrinkage properties of earth-based materials for sustainable buildings.
Google Scholar
[26]
Statuto, D., Sica, C., Picuno, P., 2018. Experimental development of clay bricks reinforced with agricultural by-products. Actual Tasks Agric. Eng.
Google Scholar
[27]
Villoria Sáez, P., Osmani, M., 2019. A diagnosis of construction and demolition waste generation and recovery practice in the European Union. J. Clean. Prod. 241. https://doi.org/10.1016/j.jclepro.2019.118400.
DOI: 10.1016/j.jclepro.2019.118400
Google Scholar
[28]
Vissac, A., Bourgès, A., Gandreau, D., Anger, R., Fontaine, L., 2017. Argiles & Biopolymères.
Google Scholar