[1]
Alix, S., Lebrun, L., Marais, S., Philippe, E., Bourmaud, A., Baley, C., Morvan, C., 2012. Pectinase treatments on technical fibres of flax: Effects on water sorption and mechanical properties. Carbohydrate Polymers 87, 177–185. https://doi.org/10.1016/j.carbpol.2011.07.035.
DOI: 10.1016/j.carbpol.2011.07.035
Google Scholar
[2]
Amran, Y.H.M., Farzadnia, N., Abang Ali, A.A., 2015. Properties and applications of foamed concrete; a review. Construction and Building Materials 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112.
DOI: 10.1016/j.conbuildmat.2015.10.112
Google Scholar
[3]
Bentz, D., Ehlen, M., Ferraris, C., Garboczi, E.J., 2001. Sorptivity-Based Service Life Predictions For Concrete Pavements 1.
Google Scholar
[4]
Chamoin, J., 2013. Optimisation des propriétés (physiques, mécaniques et hydriques) de bétons de chanvre par la maîtrise de la formulation (thesis). Rennes, INSA.
Google Scholar
[5]
De Prez, J., Van Vuure, A.W., Ivens, J., Aerts, G., Van de Voorde, I., 2018. Enzymatic treatment of flax for use in composites. Biotechnology Reports 20, e00294. https://doi.org/10.1016/j.btre.2018.e00294.
DOI: 10.1016/j.btre.2018.e00294
Google Scholar
[6]
del Coz Díaz, J.J., Álvarez Rabanal, F.P., García Nieto, P.J., Domínguez Hernández, J., Rodríguez Soria, B., Pérez-Bella, J.M., 2013. Hygrothermal properties of lightweight concrete: Experiments and numerical fitting study. Construction and Building Materials, Special Section on Recycling Wastes for Use as Construction Materials 40, 543–555. https://doi.org/10.1016/j.conbuildmat.2012.11.045.
DOI: 10.1016/j.conbuildmat.2012.11.045
Google Scholar
[7]
Ezziane, K., Bougara, A., Kadri, A., Khelafi, H., Kadri, E., 2007. Compressive strength of mortar containing natural pozzolan under various curing temperature. Cement and Concrete Composites 29, 587–593. https://doi.org/10.1016/j.cemconcomp.2007.03.002.
DOI: 10.1016/j.cemconcomp.2007.03.002
Google Scholar
[8]
Fabien, A., Sebaibi, N., Boutouil, M., 2019. Effect of several parameters on non-autoclaved aerated concrete: use of recycling waste perlite. European Journal of Environmental and Civil Engineering 1–18. https://doi.org/10.1080/19648189.2019.1647465.
DOI: 10.1080/19648189.2019.1647465
Google Scholar
[9]
Falliano, D., De Domenico, D., Ricciardi, G., Gugliandolo, E., 2019. Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Construction and Building Materials 198, 479–493. https://doi.org/10.1016/j.conbuildmat.2018.11.197.
DOI: 10.1016/j.conbuildmat.2018.11.197
Google Scholar
[10]
Giannakou, A., Jones, M.R., 2002. Potential of foamed concrete to enhance the thermal performance of low-rise dwellings, in: Innovations and Developments In Concrete Materials And Construction. Thomas Telford Publishing, p.533–544. https://doi.org/10.1680/iadicmac.31791.0051.
Google Scholar
[11]
Glouannec, P., Collet, F., Lanos, C., Mounanga, P., Pierre, T., Poullain, P., Prétot, S., Chamoin, J., Zaknoune, A., 2011. Propriétés physiques de bétons de chanvre. Matériaux & Techniques 99, 657–665. https://doi.org/10.1051/mattech/2011047.
DOI: 10.1051/mattech/2011047
Google Scholar
[12]
Hajimohammadi, A., Ngo, T., Mendis, P., 2018. Enhancing the strength of pre-made foams for foam concrete applications. Cement and Concrete Composites 87, 164–171. https://doi.org/10.1016/j.cemconcomp.2017.12.014.
DOI: 10.1016/j.cemconcomp.2017.12.014
Google Scholar
[13]
Hall, C., 1989. Water sorptivity of mortars and concretes: a review. Magazine of Concrete Research 41, 51–61. https://doi.org/10.1680/macr.1989.41.147.51.
DOI: 10.1680/macr.1989.41.147.51
Google Scholar
[14]
Jiang, Y., Ansell, M., Jia, X., Hussain, A., Lawrence, R., 2017. Physical characterisation of hemp shiv: Cell wall structure and porosity. Conference: 2nd International Conference on Bio-Based Building Materials & 1st Conference on ECOlogical valorisation of GRAnular and FIbrous materials.
Google Scholar
[15]
Kearsley, E., Mostert, D., 2005. The use of foamed concrete in refractories. Proceedings of the International Conference on the Use of Foamed Concrete in Construction 89–96.
Google Scholar
[16]
Kearsley, E.P., Wainwright, P.J., 2001. Porosity and permeability of foamed concrete. Cement and Concrete Research 31, 805–812. https://doi.org/10.1016/S0008-8846(01)00490-2.
DOI: 10.1016/s0008-8846(01)00490-2
Google Scholar
[17]
Liu, Z., Hansen, W., 2016. Effect of hydrophobic surface treatment on freeze-thaw durability of concrete. Cement and Concrete Composites 69, 49–60. https://doi.org/10.1016/j.cemconcomp.2016.03.001.
DOI: 10.1016/j.cemconcomp.2016.03.001
Google Scholar
[18]
Ma, C., Chen, B., 2016. Properties of foamed concrete containing water repellents. Construction and Building Materials 123, 106–114. https://doi.org/10.1016/j.conbuildmat.2016.06.148.
DOI: 10.1016/j.conbuildmat.2016.06.148
Google Scholar
[19]
Martys, N.S., Ferraris, C.F., 1997. Capillary transport in mortars and concrete. Cement and Concrete Research 27, 747–760. https://doi.org/10.1016/S0008-8846(97)00052-5.
DOI: 10.1016/s0008-8846(97)00052-5
Google Scholar
[20]
Medeiros, M., Helene, P., 2008. Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Mater Struct 41, 59–71. https://doi.org/10.1617/s11527-006-9218-5.
DOI: 10.1617/s11527-006-9218-5
Google Scholar
[21]
Mohd Zahari, N., Abdul Rahman, I., Ahmad Zaidi, A.M., 2009. Foamed concrete: potential application in thermal insulation. Presented at the Malaysian Technical Universities Conference on Engineering and Technology (MUCEET 2009), Kuantan, Pahang.
Google Scholar
[22]
Nambiar, E., K, R., 2009. Shrinkage Behavior of Foam Concrete. Journal of Materials in Civil Engineering - J MATER CIVIL ENG 21. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(631).
DOI: 10.1061/(asce)0899-1561(2009)21:11(631)
Google Scholar
[23]
Nambiar, E.K.K., Ramamurthy, K., 2007. Air‐void characterisation of foam concrete. Cement and Concrete Research 37, 221–230. https://doi.org/10.1016/j.cemconres.2006.10.009.
DOI: 10.1016/j.cemconres.2006.10.009
Google Scholar
[24]
Nambiar, E.K.K., Ramamurthy, K., 2006. Models relating mixture composition to the density and strength of foam concrete using response surface methodology. Cement and Concrete Composites 28, 752–760. https://doi.org/10.1016/j.cemconcomp.2006.06.001.
DOI: 10.1016/j.cemconcomp.2006.06.001
Google Scholar
[25]
Nguyen, T.T., 2010. Contribution à l'étude de la formulation et du procédé de fabrication d'éléments de construction en béton de chanvre (phdthesis). Université de Bretagne Sud. https://doi.org/10/document.
Google Scholar
[26]
Page, J., BOUTOUIL, M., Khadraoui, F., Moussa, G., 2015. Etude des propriétés mécaniques d'un béton renforcé par des fibres de lin.
Google Scholar
[27]
Panesar, D.K., 2013. Cellular concrete properties and the effect of synthetic and protein foaming agents. Construction and Building Materials 44, 575–584. https://doi.org/10.1016/j.conbuildmat.2013.03.024.
DOI: 10.1016/j.conbuildmat.2013.03.024
Google Scholar
[28]
Sach, J., Sefert, H., 1999. Foamed concrete technology: Possibilities for thermal insulation at high temperatures. CFI 76.
Google Scholar
[29]
Samson, G., 2015. Synthèse et propriétés des mousses minérales (thesis). Rennes, INSA.
Google Scholar
[30]
Samson, G., Phelipot-Mardelé, A., Lanos, C., Baux, C., 2012. Influence du tensio-actif sur les propriétés des gypses cellulaires, in: XXXème Rencontres de l'AUGC-IBPSA Constructions Durables,. Chambéry, France, p.10 p.
Google Scholar
[31]
Sang, G., Zhu, Y., Yang, G., Zhang, H., 2015. Preparation and characterization of high porosity cement-based foam material. Construction and Building Materials 91. https://doi.org/10.1016/j.conbuildmat.2015.05.032.
DOI: 10.1016/j.conbuildmat.2015.05.032
Google Scholar
[32]
Sebaibi, N., Khadraoui-Mehir, F., Kourtaa, S., Boutouil, M., 2020. Optimization of non-autoclaved aerated insulating foam using bio-based materials. Construction and Building Materials 262, 120822. https://doi.org/10.1016/j.conbuildmat.2020.120822.
DOI: 10.1016/j.conbuildmat.2020.120822
Google Scholar
[33]
Siva, M., Ramamurthy, K., Dhamodharan, R., 2017. Development of a green foaming agent and its performance evaluation. Cement and Concrete Composites 80, 245–257. https://doi.org/10.1016/j.cemconcomp.2017.03.012.
DOI: 10.1016/j.cemconcomp.2017.03.012
Google Scholar
[34]
Sun, C., Zhu, Y., Guo, J., Zhang, Y., Sun, G., 2018. Effects of foaming agent type on the workability, drying shrinkage, frost resistance and pore distribution of foamed concrete. Construction and Building Materials 186, 833–839. https://doi.org/10.1016/j.conbuildmat.2018.08.019.
DOI: 10.1016/j.conbuildmat.2018.08.019
Google Scholar
[35]
Tittarelli, F., Moriconi, G., 2010. The effect of silane-based hydrophobic admixture on corrosion of galvanized reinforcing steel in concrete. Corrosion Science 52, 2958–2963. https://doi.org/10.1016/j.corsci.2010.05.008.
DOI: 10.1016/j.corsci.2010.05.008
Google Scholar
[36]
Tronet, P., Lecompte, T., Picandet, V., Baley, C., 2016. Study of lime hemp concrete (LHC) – Mix design, casting process and mechanical behaviour. Cement and Concrete Composites 67, 60–72. https://doi.org/10.1016/j.cemconcomp.2015.12.004.
DOI: 10.1016/j.cemconcomp.2015.12.004
Google Scholar
[37]
Visagie, M., Kearsley, E., 2002. Properties of foamed concrete as influenced by air-void parameters. Concrete/Beton 101, 8–14.
Google Scholar
[38]
Zhang, Z., 2017. Modelling of sorption hysteresis and its effect on moisture transport within cementitious materials 237.
Google Scholar