Water Sensitivity of Hemp-Foam Concrete

Article Preview

Abstract:

The necessity to build energy-efficient and low environmental impact buildings favors the development of biobased light-weight materials as hemp-foam concretes. In this context, experimental protocols were developed to study the effects of hemp shiv and the production methods on the water sensitivity of bio-based foamed concrete (BBFC). Foam concrete incorporates several materials and compounds: cement, protein-based foaming agent, ground granulated blast–furnace slag, metakaolin as a binder, and hemp shiv as bio-based aggregates. The study investigated first the effect of the incorporation of hemp shiv (from 0 to 15 vol%) and then the elaboration method, comparing direct method versus preformed method on the resulting physical properties, the isotherms sorption-desorption and the capillary water absorption of hemp-foam concretes. We observe an increasing porosity of the concrete with hemp shives content. Additionally, hemp shives increase the adsorption and the capillary absorption of water. Moreover, the preformed method produces concretes more sensitive to water than the direct methods since it increases its porosities.

You might also be interested in these eBooks

Info:

Pages:

135-145

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Alix, S., Lebrun, L., Marais, S., Philippe, E., Bourmaud, A., Baley, C., Morvan, C., 2012. Pectinase treatments on technical fibres of flax: Effects on water sorption and mechanical properties. Carbohydrate Polymers 87, 177–185. https://doi.org/10.1016/j.carbpol.2011.07.035.

DOI: 10.1016/j.carbpol.2011.07.035

Google Scholar

[2] Amran, Y.H.M., Farzadnia, N., Abang Ali, A.A., 2015. Properties and applications of foamed concrete; a review. Construction and Building Materials 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112.

DOI: 10.1016/j.conbuildmat.2015.10.112

Google Scholar

[3] Bentz, D., Ehlen, M., Ferraris, C., Garboczi, E.J., 2001. Sorptivity-Based Service Life Predictions For Concrete Pavements 1.

Google Scholar

[4] Chamoin, J., 2013. Optimisation des propriétés (physiques, mécaniques et hydriques) de bétons de chanvre par la maîtrise de la formulation (thesis). Rennes, INSA.

Google Scholar

[5] De Prez, J., Van Vuure, A.W., Ivens, J., Aerts, G., Van de Voorde, I., 2018. Enzymatic treatment of flax for use in composites. Biotechnology Reports 20, e00294. https://doi.org/10.1016/j.btre.2018.e00294.

DOI: 10.1016/j.btre.2018.e00294

Google Scholar

[6] del Coz Díaz, J.J., Álvarez Rabanal, F.P., García Nieto, P.J., Domínguez Hernández, J., Rodríguez Soria, B., Pérez-Bella, J.M., 2013. Hygrothermal properties of lightweight concrete: Experiments and numerical fitting study. Construction and Building Materials, Special Section on Recycling Wastes for Use as Construction Materials 40, 543–555. https://doi.org/10.1016/j.conbuildmat.2012.11.045.

DOI: 10.1016/j.conbuildmat.2012.11.045

Google Scholar

[7] Ezziane, K., Bougara, A., Kadri, A., Khelafi, H., Kadri, E., 2007. Compressive strength of mortar containing natural pozzolan under various curing temperature. Cement and Concrete Composites 29, 587–593. https://doi.org/10.1016/j.cemconcomp.2007.03.002.

DOI: 10.1016/j.cemconcomp.2007.03.002

Google Scholar

[8] Fabien, A., Sebaibi, N., Boutouil, M., 2019. Effect of several parameters on non-autoclaved aerated concrete: use of recycling waste perlite. European Journal of Environmental and Civil Engineering 1–18. https://doi.org/10.1080/19648189.2019.1647465.

DOI: 10.1080/19648189.2019.1647465

Google Scholar

[9] Falliano, D., De Domenico, D., Ricciardi, G., Gugliandolo, E., 2019. Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density. Construction and Building Materials 198, 479–493. https://doi.org/10.1016/j.conbuildmat.2018.11.197.

DOI: 10.1016/j.conbuildmat.2018.11.197

Google Scholar

[10] Giannakou, A., Jones, M.R., 2002. Potential of foamed concrete to enhance the thermal performance of low-rise dwellings, in: Innovations and Developments In Concrete Materials And Construction. Thomas Telford Publishing, p.533–544. https://doi.org/10.1680/iadicmac.31791.0051.

Google Scholar

[11] Glouannec, P., Collet, F., Lanos, C., Mounanga, P., Pierre, T., Poullain, P., Prétot, S., Chamoin, J., Zaknoune, A., 2011. Propriétés physiques de bétons de chanvre. Matériaux & Techniques 99, 657–665. https://doi.org/10.1051/mattech/2011047.

DOI: 10.1051/mattech/2011047

Google Scholar

[12] Hajimohammadi, A., Ngo, T., Mendis, P., 2018. Enhancing the strength of pre-made foams for foam concrete applications. Cement and Concrete Composites 87, 164–171. https://doi.org/10.1016/j.cemconcomp.2017.12.014.

DOI: 10.1016/j.cemconcomp.2017.12.014

Google Scholar

[13] Hall, C., 1989. Water sorptivity of mortars and concretes: a review. Magazine of Concrete Research 41, 51–61. https://doi.org/10.1680/macr.1989.41.147.51.

DOI: 10.1680/macr.1989.41.147.51

Google Scholar

[14] Jiang, Y., Ansell, M., Jia, X., Hussain, A., Lawrence, R., 2017. Physical characterisation of hemp shiv: Cell wall structure and porosity. Conference: 2nd International Conference on Bio-Based Building Materials & 1st Conference on ECOlogical valorisation of GRAnular and FIbrous materials.

Google Scholar

[15] Kearsley, E., Mostert, D., 2005. The use of foamed concrete in refractories. Proceedings of the International Conference on the Use of Foamed Concrete in Construction 89–96.

Google Scholar

[16] Kearsley, E.P., Wainwright, P.J., 2001. Porosity and permeability of foamed concrete. Cement and Concrete Research 31, 805–812. https://doi.org/10.1016/S0008-8846(01)00490-2.

DOI: 10.1016/s0008-8846(01)00490-2

Google Scholar

[17] Liu, Z., Hansen, W., 2016. Effect of hydrophobic surface treatment on freeze-thaw durability of concrete. Cement and Concrete Composites 69, 49–60. https://doi.org/10.1016/j.cemconcomp.2016.03.001.

DOI: 10.1016/j.cemconcomp.2016.03.001

Google Scholar

[18] Ma, C., Chen, B., 2016. Properties of foamed concrete containing water repellents. Construction and Building Materials 123, 106–114. https://doi.org/10.1016/j.conbuildmat.2016.06.148.

DOI: 10.1016/j.conbuildmat.2016.06.148

Google Scholar

[19] Martys, N.S., Ferraris, C.F., 1997. Capillary transport in mortars and concrete. Cement and Concrete Research 27, 747–760. https://doi.org/10.1016/S0008-8846(97)00052-5.

DOI: 10.1016/s0008-8846(97)00052-5

Google Scholar

[20] Medeiros, M., Helene, P., 2008. Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Mater Struct 41, 59–71. https://doi.org/10.1617/s11527-006-9218-5.

DOI: 10.1617/s11527-006-9218-5

Google Scholar

[21] Mohd Zahari, N., Abdul Rahman, I., Ahmad Zaidi, A.M., 2009. Foamed concrete: potential application in thermal insulation. Presented at the Malaysian Technical Universities Conference on Engineering and Technology (MUCEET 2009), Kuantan, Pahang.

Google Scholar

[22] Nambiar, E., K, R., 2009. Shrinkage Behavior of Foam Concrete. Journal of Materials in Civil Engineering - J MATER CIVIL ENG 21. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(631).

DOI: 10.1061/(asce)0899-1561(2009)21:11(631)

Google Scholar

[23] Nambiar, E.K.K., Ramamurthy, K., 2007. Air‐void characterisation of foam concrete. Cement and Concrete Research 37, 221–230. https://doi.org/10.1016/j.cemconres.2006.10.009.

DOI: 10.1016/j.cemconres.2006.10.009

Google Scholar

[24] Nambiar, E.K.K., Ramamurthy, K., 2006. Models relating mixture composition to the density and strength of foam concrete using response surface methodology. Cement and Concrete Composites 28, 752–760. https://doi.org/10.1016/j.cemconcomp.2006.06.001.

DOI: 10.1016/j.cemconcomp.2006.06.001

Google Scholar

[25] Nguyen, T.T., 2010. Contribution à l'étude de la formulation et du procédé de fabrication d'éléments de construction en béton de chanvre (phdthesis). Université de Bretagne Sud. https://doi.org/10/document.

Google Scholar

[26] Page, J., BOUTOUIL, M., Khadraoui, F., Moussa, G., 2015. Etude des propriétés mécaniques d'un béton renforcé par des fibres de lin.

Google Scholar

[27] Panesar, D.K., 2013. Cellular concrete properties and the effect of synthetic and protein foaming agents. Construction and Building Materials 44, 575–584. https://doi.org/10.1016/j.conbuildmat.2013.03.024.

DOI: 10.1016/j.conbuildmat.2013.03.024

Google Scholar

[28] Sach, J., Sefert, H., 1999. Foamed concrete technology: Possibilities for thermal insulation at high temperatures. CFI 76.

Google Scholar

[29] Samson, G., 2015. Synthèse et propriétés des mousses minérales (thesis). Rennes, INSA.

Google Scholar

[30] Samson, G., Phelipot-Mardelé, A., Lanos, C., Baux, C., 2012. Influence du tensio-actif sur les propriétés des gypses cellulaires, in: XXXème Rencontres de l'AUGC-IBPSA Constructions Durables,. Chambéry, France, p.10 p.

Google Scholar

[31] Sang, G., Zhu, Y., Yang, G., Zhang, H., 2015. Preparation and characterization of high porosity cement-based foam material. Construction and Building Materials 91. https://doi.org/10.1016/j.conbuildmat.2015.05.032.

DOI: 10.1016/j.conbuildmat.2015.05.032

Google Scholar

[32] Sebaibi, N., Khadraoui-Mehir, F., Kourtaa, S., Boutouil, M., 2020. Optimization of non-autoclaved aerated insulating foam using bio-based materials. Construction and Building Materials 262, 120822. https://doi.org/10.1016/j.conbuildmat.2020.120822.

DOI: 10.1016/j.conbuildmat.2020.120822

Google Scholar

[33] Siva, M., Ramamurthy, K., Dhamodharan, R., 2017. Development of a green foaming agent and its performance evaluation. Cement and Concrete Composites 80, 245–257. https://doi.org/10.1016/j.cemconcomp.2017.03.012.

DOI: 10.1016/j.cemconcomp.2017.03.012

Google Scholar

[34] Sun, C., Zhu, Y., Guo, J., Zhang, Y., Sun, G., 2018. Effects of foaming agent type on the workability, drying shrinkage, frost resistance and pore distribution of foamed concrete. Construction and Building Materials 186, 833–839. https://doi.org/10.1016/j.conbuildmat.2018.08.019.

DOI: 10.1016/j.conbuildmat.2018.08.019

Google Scholar

[35] Tittarelli, F., Moriconi, G., 2010. The effect of silane-based hydrophobic admixture on corrosion of galvanized reinforcing steel in concrete. Corrosion Science 52, 2958–2963. https://doi.org/10.1016/j.corsci.2010.05.008.

DOI: 10.1016/j.corsci.2010.05.008

Google Scholar

[36] Tronet, P., Lecompte, T., Picandet, V., Baley, C., 2016. Study of lime hemp concrete (LHC) – Mix design, casting process and mechanical behaviour. Cement and Concrete Composites 67, 60–72. https://doi.org/10.1016/j.cemconcomp.2015.12.004.

DOI: 10.1016/j.cemconcomp.2015.12.004

Google Scholar

[37] Visagie, M., Kearsley, E., 2002. Properties of foamed concrete as influenced by air-void parameters. Concrete/Beton 101, 8–14.

Google Scholar

[38] Zhang, Z., 2017. Modelling of sorption hysteresis and its effect on moisture transport within cementitious materials 237.

Google Scholar