Effect of Natural and Polypropylene Fibers on early Age Cracking of Mortars

Article Preview

Abstract:

Throughout time, the use of lignocellulosic resources has been implemented in the development of building materials. Among these resources, natural fibers are used as mineral binders reinforcement due to their specific mechanical properties. This experimental investigation focused on effect of flax and hemp fiber reinforcement on the resistance of pozzolanic-based mortars to cracking due to restrained plastic shrinkage. Results were compared with polypropylene fiber reinforcement and with control mortar without fibers. The quantity of fibers added to the mortar mix were respectively 0.25% - 0.5% by mass of binder for polypropylene fibers and 0.5% - 1% by mass of binder for flax and hemp fibers. All fibers have a similar length of 12 mm. The cracking sensitivity was evaluated based on two different methods: the first consists in casting the mortar in a metal mold with stress risers whose criteria are inspired by the ASTM standards. The second consists in pouring the mortar on a brick support. In order to assess the effect of fibers on cracking due to restrained plastic shrinkage, the number of cracks, total crack area and maximum crack width within the first 6 hours after casting were determined using digital image correlation (DIC). Results showed that the flax and hemp fibers were more effective in controlling restrained plastic shrinkage cracking compared to polypropylene fibers. With a natural fiber of 1% by mass of binder, maximum crack width was reduced by at least 70% relative to control mortar based specimens. Natural fibers show great ability to propensity for cracking due to restrained plastic shrinkage; so that, they could be an alternative and ecological solution for polypropylene fibers.

You might also be interested in these eBooks

Info:

Pages:

103-112

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Acker, P., Michaud-Poupardin, V., 2002. Limiter la fissuration : conditions indispensables à la durabilité des structures en béton 12.

Google Scholar

[2] Association béton Québec, 2005. Guide de bonnes pratiques pour l'utilisation des fibres dans le béton. Association béton Québec, Montréal.

DOI: 10.3989/mc.1954.v04.i048.2552

Google Scholar

[3] Baley, C., 2020. Fibres naturelles de renfort pour matériaux composites 37.

DOI: 10.51257/a-v3-am5130

Google Scholar

[4] Bertelsen, I.M.G., Kragh, C., Cardinaud, G., Ottosen, L.M., Fischer, G., 2019. Quantification of plastic shrinkage cracking in mortars using digital image correlation. Cement and Concrete Research 123, 105761. https://doi.org/10.1016/j.cemconres.2019.05.006.

DOI: 10.1016/j.cemconres.2019.05.006

Google Scholar

[5] Bertelsen, I.M.G., Ottosen, L.M., Fischer, G., 2020. Influence of fibre characteristics on plastic shrinkage cracking in cement-based materials: A review. Construction and Building Materials 230, 116769. https://doi.org/10.1016/j.conbuildmat.2019.116769.

DOI: 10.1016/j.conbuildmat.2019.116769

Google Scholar

[6] Brandt, A.M., 2008. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, Fourteenth International Conference on Composite Structures 86, 3–9. https://doi.org/10.1016/j.compstruct.2008.03.006.

DOI: 10.1016/j.compstruct.2008.03.006

Google Scholar

[7] Chafei, S., 2014. Influence de différents traitements sur les comportements rhéologique et mécanique d'un composite cimentaire mortier-fibres de lin (These de doctorat). Caen.

Google Scholar

[8] Commission of the European Union. Directorate General for Energy., ICF International., 2015. Energy Performance of Buildings Directive (EPBD): compliance study : final report. Publications Office, LU.

Google Scholar

[9] Dinh, T.M., 2014. Contribution au développement de béton de chanvre préfabriqué utilisant un liant pouzzolanique innovant (These de doctorat). Toulouse 3.

Google Scholar

[10] Gaël, B., Christelle, T., Gilles, E., Sandrine, G., Tristan, S.-F., 2016. Determination of the proportion of anhydrous cement using SEM image analysis. Construction and Building Materials 126, 157–164. https://doi.org/10.1016/j.conbuildmat.2016.09.037.

DOI: 10.1016/j.conbuildmat.2016.09.037

Google Scholar

[11] Ghamisi, P., Couceiro, M.S., Benediktsson, J.A., Ferreira, N.M.F., 2012. An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Systems with Applications 39, 12407–12417. https://doi.org/10.1016/j.eswa.2012.04.078.

DOI: 10.1016/j.eswa.2012.04.078

Google Scholar

[12] Ghourchian, S., Wyrzykowski, M., Plamondon, M., Lura, P., 2019. On the mechanism of plastic shrinkage cracking in fresh cementitious materials. Cement and Concrete Research 115, 251–263. https://doi.org/10.1016/j.cemconres.2018.10.015.

DOI: 10.1016/j.cemconres.2018.10.015

Google Scholar

[13] Kennedy, J., Eberhart, R., 1995. Particle swarm optimization, in: Proceedings of ICNN'95 - International Conference on Neural Networks. Presented at the ICNN'95 - International Conference on Neural Networks, IEEE, Perth, WA, Australia, p.1942–1948. https://doi.org/10.1109/ICNN.1995.488968.

DOI: 10.1109/icnn.1995.488968

Google Scholar

[14] Kouta, N., Saliba, J., Saiyouri, N., 2020. Effect of flax fibers on early age shrinkage and cracking of earth concrete. Construction and Building Materials 254, 119315. https://doi.org/10.1016/j.conbuildmat.2020.119315.

DOI: 10.1016/j.conbuildmat.2020.119315

Google Scholar

[15] Le Hoang, T., 2013. Etude de caractérisation du comportement de composites cimentaires incorporant des fibres courtes de lin (These de doctorat). Caen.

Google Scholar

[16] Li, Z., Wang, L., Wang, X., 2004. Compressive and flexural properties of hemp fiber reinforced concrete. Fibers and Polymers 5, 187–197. https://doi.org/10.1007/BF02902998.

DOI: 10.1007/bf02902998

Google Scholar

[17] Li, Z., Wang, X., Wang, L., 2006. Properties of hemp fibre reinforced concrete composites. Composites Part A: Applied Science and Manufacturing 37, 497–505. https://doi.org/10.1016/j.compositesa.2005.01.032.

DOI: 10.1016/j.compositesa.2005.01.032

Google Scholar

[18] Magniont, C., 2010. Contribution à la formulation et à la caractérisation d'un écomatériau de construction à base d'agroressources (phd). Université de Toulouse, Université Toulouse III - Paul Sabatier.

DOI: 10.35562/balisages.1003

Google Scholar

[19] Page, J., 2017. Formulation et caractérisation d'un composite cimentaire biofibré pour des procédés de construction préfabriquée (These de doctorat). Normandie.

Google Scholar

[20] Radocea, A., 2015. A model of plastic shrinkage. Magazine of Concrete Research. https://doi.org/10.1680/macr.1994.46.167.125.

DOI: 10.1680/macr.1994.46.167.125

Google Scholar

[21] Santos, S., Tonoli, G.H.D., Mejia, J., Fiorelli, J., Jr, H., 2015. Non-conventional cement-based composites reinforced with vegetable fibers: A review of strategies to improve durability. Materiales de Construcción 65. https://doi.org/10.3989/mc.2015.05514.

DOI: 10.3989/mc.2015.05514

Google Scholar

[22] Sedan, D., 2007. Etude des interactions physico-chimiques aux interfaces fibres de chanvre/ciment : influence sur les propriétés mécaniques du composite (These de doctorat). Limoges.

DOI: 10.1051/mattech:2007038

Google Scholar

[23] Sirajuddin, M., Gettu, R., 2018. Plastic shrinkage cracking of concrete incorporating mineral admixtures and its mitigation. Mater Struct 51, 48. https://doi.org/10.1617/s11527-018-1173-4.

DOI: 10.1617/s11527-018-1173-4

Google Scholar

[24] Souche, J.-C., 2015. Etude du retrait plastique des bétons à base de granulats recyclés avec mesure de l'influence de leur degré de saturation (These de doctorat). Montpellier. Standard References.

DOI: 10.1007/bf02479650

Google Scholar

[25] ASTM C1579-06.pdf, 2013. Standard test method for evaluating Plastic Shrinkage Cracking of Restrained Fiber reinforced concrete.

DOI: 10.1520/c1579

Google Scholar

[26] Norme NF P18-452 Bétons. Mesure du temps d'écoulement des bétons et des mortiers aux maniabilimètres - AFNOR.

Google Scholar

[27] Norme NF EN 1015-3 5(1999) : Méthodes d'essai des mortiers pour maçonnerie- Détermination de la consistance du mortier frais (avec une table a secousse).

Google Scholar

[28] Norme NF EN 169-1 : Méthodes d'essai des ciments pour maçonnerie- Détermination des résistances mécaniques.

Google Scholar