[1]
Aguiar, A. L. D, Da Gloria, M. Y. R, Toledo Filho, R. D. Influência do tratamento da serragem de madeira na resistência à compressão do bio-concreto de madeira. Congresso de Construção Civil, Brasilia, (2020).
DOI: 10.11606/d.18.2011.tde-05042011-165655
Google Scholar
[2]
Abuelnuor, A. A. A., Alhag, I. H. I., Omara, A. A. M., et al., 2017. Buildings cooling: An experimental study of Phase Change Materials storage for low energy buildings. Proceedings - 2017 International Conference on Communication, Control, Computing and Electronics Engineering, ICCCCEE 2017, 1–5. https://doi.org/10.1109/ICCCCEE.2017.7867680.
DOI: 10.1109/iccccee.2017.7867680
Google Scholar
[3]
Amziane, S.; Collet, F., 2017. Bio-aggregates based building materials: State-of-the-Art Report of the RILEM Technical Committee 236-BBM, v. 23. Springer.
DOI: 10.1007/978-94-024-1031-0
Google Scholar
[4]
Andreola, V. M. et al. Partial replacement of cement by combination of fly ash and metakaolin in bamboo bio-concretes. 3rd International Conference on Bio-Based Building Materials. Anais Beslfast, United Kingdom, (2019).
Google Scholar
[5]
Associação Brasileira De Normas Técnicas (ABNT). NBR ISO 14040: Gestão ambiental – Avaliação do ciclo de vida – Princípios e estrutura. Rio de Janeiro, (2009).
Google Scholar
[6]
Associação Brasileira De Normas Técnicas (ABNT). NBR 5739 :2018: Concreto – Ensaio de compressão de prova cilíndricos. Rio de Janeiro, (2018).
Google Scholar
[7]
Caldas, L.R, Da Gloria, M. Y. R., Pittau, F., et al., 2020. Environmental impact assessment of wood bio-concretes: Evaluation of the influence of different supplementary cementitious materials. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.121146.
DOI: 10.1016/j.conbuildmat.2020.121146
Google Scholar
[8]
Caldas, L.R., Saraiva, A.B., Lucena, A.F.P., Da Gloria, M.Y., Santos, A.S., Filho, R.D.T., 2021. Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete. Resour. Conserv. Recycl. 166. https://doi.org/10.1016/j.resconrec.2020.105346.
DOI: 10.1016/j.resconrec.2020.105346
Google Scholar
[9]
Da Gloria, M. Y. R., & Toledo Filho, R. D., 2020. Innovative sandwich panels made of wood bio-concrete and sisal fiber reinforced cement composites. Construction and Building Materials, 121636. https://doi.org/10.1016/j.conbuildmat.2020.121636.
DOI: 10.1016/j.conbuildmat.2020.121636
Google Scholar
[10]
Diquélou, Youen et al., 2015. Impact of hemp shiv on cement setting and hardening: Influence of the extracted components from the aggregates and study of the interfaces with the inorganic matrix. Cement and Concrete Composites, v. 55, pp.112-121.
DOI: 10.1016/j.cemconcomp.2014.09.004
Google Scholar
[11]
Garcia, R., Alvarenga, R. A. F., Huysveld, S., et al., 2020. Accounting for biogenic carbon and end-of-life allocation in life cycle assessment of multi-output wood cascade systems. Journal of Cleaner Production, 275, 122795. https://doi.org/10.1016/j.jclepro.2020.122795.
DOI: 10.1016/j.jclepro.2020.122795
Google Scholar
[12]
Goedkoop M, Oele M, Effting S., 2004. SimaPro database manual methods library. PRé Consultants, Netherlands.
Google Scholar
[13]
Kayo, C., Noda, R., Sasaki, T., et al., 2014. Carbon balance in the life cycle of wood: targeting a timber check dam. Journal of Wood Science, 61(1), 70–80. https://doi.org/10.1007/s10086-014-1434-y.
DOI: 10.1007/s10086-014-1434-y
Google Scholar
[14]
Pittau, Francesco et al. Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Building and Environment, v. 129, pp.117-129, (2018).
DOI: 10.1016/j.buildenv.2017.12.006
Google Scholar
[15]
Thomas, S. C., & Martin, A. R. (2012). Carbon content of tree tissues: A synthesis. Forests, 3(2), 332–352. https://doi.org/10.3390/f3020332.
Google Scholar
[16]
UNEP, 2019. Global Status Report for Buildings and Construction. Towards a zero-emissions, effi cient and resilient buildings and constructi on sector.
Google Scholar