[1]
ADEME, 2018. Climat, Air et Energie. Chiffres clés - édition (2018).
Google Scholar
[2]
Bennai, F., El Hachem, C., Abahri, K., Belarbi, R., 2019. Influence of hydric solicitations on the morphological behavior of hemp concrete. RILEM Technical Letters 4, 16–21. https://doi.org/10.21809/rilemtechlett.2019.80.
DOI: 10.21809/rilemtechlett.2019.80
Google Scholar
[3]
Bennai, F., El Hachem, C., Abahri, K., Belarbi, R., 2018. Microscopic hydric characterization of hemp concrete by X-ray microtomography and digital volume correlation. Construction and Building Materials 188, 983–994. https://doi.org/10.1016/j.conbuildmat.2018.08.198.
DOI: 10.1016/j.conbuildmat.2018.08.198
Google Scholar
[4]
Bennai, F., Nabil, I., Abahri, K., Belarbi, R., Tahakourt, A., 2017. Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution. Heat and Mass Transfer. https://doi.org/10.1007/s00231-017-2221-2.
DOI: 10.1007/s00231-017-2221-2
Google Scholar
[5]
Delannoy, G., Marceau, S., Glé, P., Gourlay, E., Guéguen-Minerbe, M., Amziane, S., Farcas, F., 2020. Durability of hemp concretes exposed to accelerated environmental aging. Construction and Building Materials 252, 119043. https://doi.org/10.1016/j.conbuildmat.2020.119043.
DOI: 10.1016/j.conbuildmat.2020.119043
Google Scholar
[6]
El Hachem, C., Abahri, K., Bennacer, R., 2019. Original experimental and numerical approach for prediction of the microscopic hygro-mechanical behavior of spruce wood. Construction and Building Materials 203, 258–266. https://doi.org/10.1016/j.conbuildmat.2019.01.107.
DOI: 10.1016/j.conbuildmat.2019.01.107
Google Scholar
[7]
El Hachem, C., Ye, P., Abahri, K., Bennacer, R., 2017. Fiber's hygromorphic effect on thermal conductivity of wooden fibrous insulation characterized by X-ray tomography. Construction and Building Materials 150, 758–765. https://doi.org/10.1016/j.conbuildmat.2017.06.013.
DOI: 10.1016/j.conbuildmat.2017.06.013
Google Scholar
[8]
EOTA, 2013. Guideline for European technical approval of external thermal insulation composite systems (ETICS) with rendering.
Google Scholar
[9]
Garikapati, K.P., Sadeghian, P., 2020. Mechanical behavior of flax-lime concrete blocks made of waste flax shives and lime binder reinforced with jute fabric. Journal of Building Engineering 29, 101187. https://doi.org/10.1016/j.jobe.2020.101187.
DOI: 10.1016/j.jobe.2020.101187
Google Scholar
[10]
Jerónimo, A., Soares, C., Aguiar, B., Lima, N., 2020. Hydraulic lime mortars incorporating micro cork granules with antifungal properties. Construction and Building Materials 255, 119368. https://doi.org/10.1016/j.conbuildmat.2020.119368.
DOI: 10.1016/j.conbuildmat.2020.119368
Google Scholar
[11]
Marceau, S., Glé, P., Guéguen-Minerbe, M., Gourlay, E., Moscardelli, S., Nour, I., Amziane, S., 2017. Influence of accelerated aging on the properties of hemp concretes. Construction and Building Materials 139, 524–530. https://doi.org/10.1016/j.conbuildmat.2016.11.129.
DOI: 10.1016/j.conbuildmat.2016.11.129
Google Scholar
[12]
Pacheco Menor, M.C., Serna Ros, P., Macías García, A., Arévalo Caballero, M.J., 2019. Granulated cork with bark characterised as environment-friendly lightweight aggregate for cement based materials. Journal of Cleaner Production 229, 358–373. https://doi.org/10.1016/j.jclepro. 2019.04.154.
DOI: 10.1016/j.jclepro.2019.04.154
Google Scholar
[13]
Panesar, D.K., Shindman, B., 2012. The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cement and Concrete Composites 34, 982–992. https://doi.org/10.1016/j.cemconcomp.2012.06.003.
DOI: 10.1016/j.cemconcomp.2012.06.003
Google Scholar
[14]
Ren, J., Zhao, Z., Zhang, J., Wang, J., Guo, S., Sun, J., 2019. Study on the hygrothermal properties of a Chinese solar greenhouse with a straw block north wall. Energy and Buildings 193, 127–138. https://doi.org/10.1016/j.enbuild.2019.03.040.
DOI: 10.1016/j.enbuild.2019.03.040
Google Scholar
[15]
Rode, C., Peuhkuri, R.H., Mortensen, L.H., Hansen, K.K., Time, B., Gustavsen, A., Ojanen, T., Ahonen, J., Svennberg, K., Arfvidsson, J., Harderup, L.-E., 2005. Moisture Buffering of Building Materials. Technical University of Denmark, Department of Civil Engineering.
DOI: 10.1520/stp45403s
Google Scholar
[16]
Sentenac, C., Sonebi, M., Amziane, S., Pascal, U.B., Pascal, I., Clermont-Ferrand, P., 2017. Investigation on the performance and durability of treated hemp concrete with linseed oil 35, 9.
Google Scholar
[17]
Walker, R., Pavia, S., Mitchell, R., 2014. Mechanical properties and durability of hemp-lime concretes. Construction and Building Materials 61, 340–348. https://doi.org/10.1016/j.conbuildmat.2014.02.065.
DOI: 10.1016/j.conbuildmat.2014.02.065
Google Scholar