Influence of High Temperatures on the Mechanical Properties of Wood Bio-Concretes

Article Preview

Abstract:

The use of wood wastes in the production of bio-concrete shows high potential for the development of sustainable civil construction, since this material, in addition to having low density, increases the energy efficiency of buildings in terms of thermal insulation. However, a concern arising from the production of bio-concretes with high amounts of plant biomass is how this material behaves when subjected to high temperatures. Therefore, this work aims to evaluate the influence of high temperatures on the mechanical properties of wood bio-concretes. The mixtures were produced with wood shavings volumetric fractions of 40, 50 and 60% and cementitious matrix composed of a combination of cement, fly ash and metakaolin. Uniaxial compression tests and scanning electron microscopy (SEM) were performed, with bio-concrete at age of 28 days, at room temperature (reference) and after exposure to temperatures of 100, 150, 200 and 250 °C. The density and compressive strength of the bio-concrete gradually decreased with increasing biomass content. Up to 200 °C, reductions in strength and densities less than 19% and 13%, respectively, were observed. At 250 °C, reductions of compressive strength reached 87%. Analysis performed by SEM showed an increase in the number of cracks in the wood-cementitious matrix interface and wood degradation by increasing the temperature.

You might also be interested in these eBooks

Info:

Pages:

61-68

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ABNT NBR 5733, 1991. Cimento Portland com Alta Resistencia Inicial.

Google Scholar

[2] ABNT NBR 5739, 2018. Concreto – Ensaio de compressão de corpos de prova cilíndricos.

Google Scholar

[3] ABNT NBR 8522, 2017. Concreto – Determinação dos módulos estáticos de elasticidade e de deformação à compressão.

Google Scholar

[4] ABNT NBR 9778, 2009. Argamassa e concreto endurecidos – Determinação da absorção de água, índice de vazios e massa específica.

Google Scholar

[5] Aguiar, A. L. D., 2020. Estabilidade térmica e reação ao fogo do bio-concreto de madeira. (Master thesis). Programa de Pós-graduação em Engenharia Civil, Universidade Federal do Rio de Janeiro, RJ.

DOI: 10.22239/2317-269x.01977

Google Scholar

[6] Andreola, V. M., da Gloria, M. R., dos Santos, D. J., Toledo Filho, R. D., 2019. Partial replacement of cement by combination of fly ash and metakaolin in bamboo bioconcretes. Academic Journal of Civil Engineering, 37(2), 102-106.  https://doi.org/10.26168/icbbm2019.14.

Google Scholar

[7] Caldas, L. R., 2020. Ferramenta de análise dinâmica para avaliação da emissão de carbono em edificações pelo uso de biomateriais. (PhD thesis). Programa de Pós-graduação em Engenharia Civil, Universidade Federal do Rio de Janeiro, RJ.

DOI: 10.22239/2317-269x.01977

Google Scholar

[8] Da Gloria, M. Y. R., 2015. Desenvolvimento e caracterização de painéis sanduíches de concreto com núcleo leve e faces em laminados reforçados com fibras longas de sisal. (Master thesis). Programa de Pós-graduação em Engenharia Civil, Universidade Federal do Rio de Janeiro, RJ.

DOI: 10.22239/2317-269x.01977

Google Scholar

[9] Da Silva, J. B., Pepe, M., Toledo Filho, R. D., 2020. High temperatures effect on mechanical and physical performance of normal and high strength recycled aggregate concrete. Fire Safety Journal, 117, 103222. https://doi.org/10.1016/j.firesaf.2020.103222.

DOI: 10.1016/j.firesaf.2020.103222

Google Scholar

[10] Figueroa, M. J. M., Moraes, P. D. D., 2009. Comportamento da madeira a temperaturas elevadas. Ambiente construído, 9(4), 157-174. https://doi.org/10.1590/s1678-86212009000400525.

DOI: 10.1590/s1678-86212009000400525

Google Scholar

[11] Fingerloos, F., 2007. Buchbesprechung: fib Bulletin 38: Fire design of concrete structures–materials, structures and modelling. Beton‐und Stahlbetonbau, 102(9), 662-662. https://doi.org/10.1002/best.200790131.

DOI: 10.1002/best.200790131

Google Scholar

[12] Hager, I., 2013. Behaviour of cement concrete at high temperature. Bulletin of the Polish Academy of Sciences. Technical Sciences, 61(1), 145-154. https://.

DOI: 10.2478/bpasts-2013-0013

Google Scholar

[13] Poncsák, S., Kocaefe, D., Bouazara, M., Pichette, A., 2006. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Science and Technology, 40(8), 647-663. https://DOI 10.1007/s00226-006-0082-9.

DOI: 10.1007/s00226-006-0082-9

Google Scholar

[14] Wilk, M., Magdziarz, A., Kalemba, I., Gara, P., 2016. Carbonisation of wood residue into charcoal during low temperature process. Renewable Energy, 85, 507-513. https://doi.org/10.1016/j.renene.2015.06.072.

DOI: 10.1016/j.renene.2015.06.072

Google Scholar

[15] Xu, Q., Chen, L., Harries, K. A., Zhang, F., et al., 2015. Combustion and charring properties of five common constructional wood species from cone calorimeter tests. Construction and Building Materials, 96, 416-427. https://doi.org/10.1016/j.conbuildmat.2015.08.062.

DOI: 10.1016/j.conbuildmat.2015.08.062

Google Scholar