[1]
Abdalqader, A and Sonebi, M. (2020). Dolomitic filler in self-compacting concrete: a review, RILEM Technical Letter (2020) 5: 75-84, https://doi.org/10.21809/rilemtechlett.2020.118.
DOI: 10.21809/rilemtechlett.2020.118
Google Scholar
[2]
ASTMC618-15. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete American Standard Test on Materials; American Standard Test of Materials; ASTM International: West Conshohocken, PA, USA, (2015).
DOI: 10.1520/c0618-00
Google Scholar
[3]
Bayiha, B.N.; Billong, N.; Yamb, E.; Kaze, R.C.; Nzengwa, R. Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr. Build. Mater. 2019, 217, 28–35.
DOI: 10.1016/j.conbuildmat.2019.05.058
Google Scholar
[4]
Bikoko, T.G.L.J., Tchamba, J.C. (2017). Filtration of Fresh Cement Pastes. Electronic Journal of Geotechnical Engineering, 2017 (22.06): 1791-1803.
Google Scholar
[5]
Bikoko, T.G.L.J, Katte, V.Y, Bawe, G.N, Fokou Dongmene, M, Okonta, F.N, Tchamba, J.C. (2019). Characterisation of lightweight concrete impregnated with cement and charcoal. In: S. Amziane and M. Sonebi (Eds). Proceedings of the 3rd International Conference on Bio-based Building Materials, 26-28, RILEM Publications. Presented at the ICBBM 2019, RILEM, Belfast, UK, pp.229-237.
Google Scholar
[6]
Bikoko, T.G.L.J, Katte, V.Y, Bawe, G.N, Fokou Dongmene, M, Okonta, F.N, Tchamba, J.C. (2019). Characterisation of lightweight concrete impregnated with cement and charcoal. Academic Journal of Civil Engineering, 37(2), 229-237. https://doi.org/10.26168/icbbm2019.33.
Google Scholar
[7]
Bikoko, T.G.L.J, Tchamba, J.C., Katte, V.Y, Amziane, S., Okonta, F.N., Tamo, T.T. (2021). Characterization of lightweight concrete impregnated with cement and Cameroonian charcoal as coarse lightweight aggregate. International Journal of Advanced Research in Engineering and Technology, 12(3), 330-365.
Google Scholar
[8]
Boden, T.A., Marland G., and Andres R.J. (2010). Global, regional, and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. of Energy, Oak Ridge, Tenn., U.S.A. doi 10.3334/CDIAC/00001_V2010. http://cdiac.ornl.gov/trends/emis/graphics/global.total.jpg. Accessed 4 January (2016).
DOI: 10.3334/cdiac/00001_v2010
Google Scholar
[9]
CEMBUREAU, World Statistical Review 1996–2008 Cement Production, Trade, Consumption Data, The European Cement Association, Brussels, (2010).
Google Scholar
[10]
Chowdhury, S., Mishra, M., Suganya, O. (2015). The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview, Ain Shams Engineering Journal (2015) 6, 429–437.
DOI: 10.1016/j.asej.2014.11.005
Google Scholar
[11]
FAO, Food Wastage Footprint Impacts on Natural Resources: Summary Report, Food and Agriculture Organisation of the United Nations, FAO, [Rome], (2013).
Google Scholar
[12]
Garcia, M.D. and Sousa-Coutinho, J. (2013). Strength and durability of cement with forest waste bottom ash, Construction and Building Materials, 41(2013), 897-910.
DOI: 10.1016/j.conbuildmat.2012.11.081
Google Scholar
[13]
Hendricks, C.A, Worrell E., de Jagger D., Block K., Riemer P (2004), Emission Reduction of Greenhouse Gases from Cement Industry, Conference paper, greenhouse gas control technologies, www.wbcsd.org/web/projects/cement/tf1/prghgt42.pdf.
DOI: 10.1016/b978-008043018-8/50150-8
Google Scholar
[14]
Humphreys, K, and Mahasenan, M. Sub study 8: Climate change-toward a sustainable cement industry. An independent study commissioned by the world business council for sustainable development (WBCSD); (2002).
Google Scholar
[15]
Imbabi, S.M., Carrigan, C., McKenna, S. (2012). Trends and developments in green cement and concrete technology, Int. J. Sustainable Built Environ. 1 (2012) 194–216.
DOI: 10.1016/j.ijsbe.2013.05.001
Google Scholar
[16]
Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.H., Haberl, H., Fischer- Kowalski, M. (2009). Growth in global materials use, GDP and population during the 20th century, Ecol. Econ. 68 (2009) 2696–2705, https://doi.org/10.1016/j. ecol. econ. 2009.05.007.
DOI: 10.1016/j.ecolecon.2009.05.007
Google Scholar
[17]
Le Quere C. et al. 32 authors (2013), Global carbon budget 2013, Earth Syst. Sci. data, 6, 235-263, 2014. 730.
Google Scholar
[18]
Pacheco-Torgal F., Castro-Gomes J., Jalali S. Durability and environmental performance of alkali activated tungsten mine waste mud mortars. Journal of Materials and Civil Engineering 22 2011, 897-904.
DOI: 10.1061/(asce)mt.1943-5533.0000092
Google Scholar
[19]
Pehlivan, A, O., Karakus, S., Karapinar, I. S., Ozbay, A. E.O., Yazgan, A.U., Tasaltin, N. and Kilislioglu, A. (2020). Effect of Novel Synthesized Nanoeggshell on the Properties of Cementitious Composites, Journal of Advanced Concrete Technology, Vol. 18, 294-306, May (2020).
DOI: 10.3151/jact.18.294
Google Scholar
[20]
Schmidt, W., Otieno, M., Olonade, K.A., Radebe, N.W., Damme, H.V., Tunji-Olayeni, P., Kenai, S., Tawia, A.T., Manful, K., Akinwale, A., Mbugua, R.N., (2020). Innovation potentials for construction materials with specific focus on the challenges in Africa, RILEM Technical Letter (2020) 5: 63-74, https://doi.org/10.21809/rilemtechlett.2020.112.
DOI: 10.21809/rilemtechlett.2020.112
Google Scholar
[21]
Scrivener, K.L., John, V.M., Gartner, E.M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cement and Concrete Research 114 (2018) 2-26.
DOI: 10.1016/j.cemconres.2018.03.015
Google Scholar
[22]
Steinberger, J.K., Krausmann, F., Eisenmenger, N. Global patterns of materials use: a socioeconomic and geophysical analysis, Ecol. Econ. 69 (2010) 1148–1158, https://doi.org/10.1016/j. ecolecon.2009.12.009.
DOI: 10.1016/j.ecolecon.2009.12.009
Google Scholar
[23]
Tarun, R. R.N. Kraus, and R. Kumar. Wood ash: a new source of pozzolanic material.CBU 2001-10. Munbai, 2001, 12 p.
Google Scholar
[24]
Tchamba, J., C., Bikoko, T.G.L.J. (2016). Study of transfer properties on fresh cement pastes; laboratory experiments: discontinue measurements using a permeameter. Journal of Materials Science Research, 5(2):23-32, 20. https://dx.doi.org/10.5539/jmsr.v5n2p23.
DOI: 10.5539/jmsr.v5n2p23
Google Scholar
[25]
Udoeyo, F.F., Inyang, H., Young, D.T. and Oparadu, E.E. (2006). Potential of Wood Waste Ash as an Additive in Concrete. ASCE Journal of Materials in Civil Engineering, 605-611.
DOI: 10.1061/(asce)0899-1561(2006)18:4(605)
Google Scholar
[26]
Vu, V., Cloutier, A., Bissonnette, B., Blanchet, P. and Duchesne, J. (2019). The Effect of Wood Ash as a Partial Cement Replacement Material for Making Wood-Cement Panels, Materials 2019, 12, 2766;.
DOI: 10.3390/ma12172766
Google Scholar
[27]
Wang, S., Miller, A., Llamazos, E., Fonseca, F. and Baxter, L. (2008). Biomass Fly ash in Concrete: Mixture proportioning and Mechanical properties. Fuel, 87, 365-371. http://dx.doi.org/10.1016/j.fuel.2007.05.026.
DOI: 10.1016/j.fuel.2007.05.026
Google Scholar