[1]
Amziane, S., 2016. Overview on bio-based building material made with plant aggregate. RILEM Technical Letters 9.
DOI: 10.21809/rilemtechlett.2016.9
Google Scholar
[2]
Amziane, S., Collet, F. (Eds.), 2017. Bio-aggregates Based Building Materials : State-of-the-Art Report of the RILEM Technical Committee 236-BBM, RILEM State-of-the-Art Reports. Springer Netherlands. https://doi.org/10.1007/978-94-024-1031-0.
DOI: 10.1007/978-94-024-1031-0
Google Scholar
[3]
Amziane, S., Collet, F., Lawrence, M., Magniont, C., Picandet, V., Sonebi, M., 2017. Recommendation of the RILEM TC 236-BBM: characterisation testing of hemp shiv to determine the initial water content, water absorption, dry density, particle size distribution and thermal conductivity. Mater Struct 50, 167. https://doi.org/10.1617/s11527-017-1029-3.
DOI: 10.1617/s11527-017-1029-3
Google Scholar
[4]
Arnaud, L., Gourlay, E., 2012. Experimental study of parameters influencing mechanical properties of hemp concretes. Construction and Building Materials 28, 50–56. https://doi.org/10.1016/j.conbuildmat.2011.07.052.
DOI: 10.1016/j.conbuildmat.2011.07.052
Google Scholar
[5]
Cérézo, V., 2005. Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales : approche expérimentale et modélisation théorique (PhD thesis). http://www.theses.fr. Lyon, INSA.
Google Scholar
[6]
Chen, Y., Yu, Q.L., Brouwers, H.J.H., 2017. Acoustic performance and microstructural analysis of bio-based lightweight concrete containing miscanthus. Construction and Building Materials 157, 839–851. https://doi.org/10.1016/j.conbuildmat.2017.09.161.
DOI: 10.1016/j.conbuildmat.2017.09.161
Google Scholar
[7]
Collet-Foucault, F., 2004. Caractérisation hydrique et thermique de matériaux de génie civil à faibles impacts environnementaux (PhD thesis). http://www.theses.fr. Rennes, INSA.
Google Scholar
[8]
E33 Committee, 2017. Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method. ASTM International. https://doi.org/10.1520/E2611-17.
DOI: 10.1520/e2611-09
Google Scholar
[9]
Eschenhagen, A., Raj, M., Rodrigo, N., Zamora, A., Labonne, L., Evon, P., Welemane, H., 2019. Investigation of Miscanthus and Sunflower Stalk Fiber-Reinforced Composites for Insulation Applications. Advances in Civil Engineering 2019, 1–7. https://doi.org/10.1155/2019/9328087.
DOI: 10.1155/2019/9328087
Google Scholar
[10]
Glé, P., 2013. Acoustique des Matériaux du Bâtiment à base de Fibres et Particules Végétales - Outils de Caractérisation, Modélisation et Optimisation (PhD thesis). INSA de Lyon.
Google Scholar
[11]
Glé, P., Gourdon, E., Arnaud, L., 2011. Acoustical properties of materials made of vegetable particles with several scales of porosity. Applied Acoustics 72, 249–259. https://doi.org/10.1016/j.apacoust.2010.11.003.
DOI: 10.1016/j.apacoust.2010.11.003
Google Scholar
[12]
Kinnane, O., Reilly, A., Grimes, J., Pavia, S., Walker, R., 2016. Acoustic absorption of hemp-lime construction. Construction and Building Materials 122, 674–682. https://doi.org/10.1016/j.conbuildmat.2016.06.106.
DOI: 10.1016/j.conbuildmat.2016.06.106
Google Scholar
[13]
Kioy, S., 2013. Lime-hemp composites: compressive strength and résistance to fungal attacks. MEng dissertation, recalled in Appendix 1: Resistance to compression and stress-strain properties, in: Hemp Lime Construction, A Guide to Building With Hemp Lime Composites. IHS BRE Press.
DOI: 10.7190/shu-thesis-00266
Google Scholar
[14]
Magniont, C., Escadeillas, G., 2017. Chemical Composition of Bio-aggregates and Their Interactions with Mineral Binders, in: Amziane, S., Collet, F. (Eds.), Bio-Aggregates Based Building Materials : State-of-the-Art Report of the RILEM Technical Committee 236-BBM, RILEM State-of-the-Art Reports. Springer Netherlands, Dordrecht, p.1–37. https://doi.org/10.1007/978-94-024-1031-0_1.
DOI: 10.1007/978-94-024-1031-0
Google Scholar
[15]
Mazhoud, B., 2017. Elaboration et caractérisation mécanique, hygrique et thermique de composites bio-sourcés (PhD thesis). INSA de Rennes.
Google Scholar
[16]
Moll, L., Wever, C., Völkering, G., Pude, R., 2020. Increase of Miscanthus Cultivation with New Roles in Materials Production—A Review. Agronomy 10, 308. https://doi.org/10.3390/agronomy10020308.
DOI: 10.3390/agronomy10020308
Google Scholar
[17]
Nguyen, T.-T., Picandet, V., Amziane, S., Baley, C., 2009. Influence of compactness and hemp hurd characteristics on the mechanical properties of lime and hemp concrete. European Journal of Environmental and Civil Engineering 13, 1039–1050. https://doi.org/10.1080/19648189.2009.9693171.
DOI: 10.1080/19648189.2009.9693171
Google Scholar
[18]
Nozahic, V., Amziane, S., Torrent, G., Saïdi, K., De Baynast, H., 2012. Design of green concrete made of plant-derived aggregates and a pumice–lime binder. Cement and Concrete Composites 34, 231–241. https://doi.org/10.1016/j.cemconcomp.2011.09.002.
DOI: 10.1016/j.cemconcomp.2011.09.002
Google Scholar
[19]
Ntimugura, F., Vinai, R., Harper, A., Walker, P., 2020. Mechanical, thermal, hygroscopic and acoustic properties of bio-aggregates – lime and alkali - activated insulating composite materials: A review of current status and prospects for miscanthus as an innovative resource in the South West of England. Sustainable Materials and Technologies e00211. https://doi.org/10.1016/j.susmat.2020.e00211.
DOI: 10.1016/j.susmat.2020.e00211
Google Scholar
[20]
Ntimugura, F., Vinai, R., Harper, A.B., Walker, P., 2021. Environmental performance of miscanthus-lime lightweight concrete using life cycle assessment: Application in external wall assemblies. Sustainable Materials and Technologies 28, e00253. https://doi.org/10.1016/j.susmat.2021.e00253.
DOI: 10.1016/j.susmat.2021.e00253
Google Scholar
[21]
Peñaloza, D., Erlandsson, M., Falk, A., 2016. Exploring the climate impact effects of increased use of bio-based materials in buildings. Construction and Building Materials 125, 219–226. https://doi.org/10.1016/j.conbuildmat.2016.08.041.
DOI: 10.1016/j.conbuildmat.2016.08.041
Google Scholar
[22]
Pude, R., Treseler, C.H., Trettin, R., Noga, G., 2005. Suitability of Miscanthus genotypes for lightweight concrete.
Google Scholar
[23]
Savastano, H., Santos, S.F., Fiorelli, J., Agopyan, V., 2016. 19 - Sustainable use of vegetable fibres and particles in civil construction, in: Khatib, J.M. (Ed.), Sustainability of Construction Materials (Second Edition), Woodhead Publishing Series in Civil and Structural Engineering. Woodhead Publishing, p.477–520. https://doi.org/10.1016/B978-0-08-100370-1.00019-6.
DOI: 10.1016/b978-0-08-100370-1.00019-6
Google Scholar
[24]
Shravage, P., Jain, S., Karanth, N., 2010. Effect of intrinsic parameters on sound absorption and transmission loss: A parametric study. The Journal of the Acoustical Society of America 127, 1735–1735. https://doi.org/10.1121/1.3383465.
DOI: 10.1121/1.3383465
Google Scholar
[25]
Sunderland, L., 2015. Tackling embodied carbon in buildings. UK Green Building Council 16.
Google Scholar
[26]
Tronet, P., Lecompte, T., Picandet, V., Baley, C., 2016. Study of lime hemp concrete (LHC) – Mix design, casting process and mechanical behaviour. Cement and Concrete Composites 67, 60–72. https://doi.org/10.1016/j.cemconcomp.2015.12.004.
DOI: 10.1016/j.cemconcomp.2015.12.004
Google Scholar
[27]
Williams, J., Lawrence, M., Walker, P., 2018. The influence of constituents on the properties of the bio-aggregate composite hemp-lime. Construction and Building Materials 159, 9–17. https://doi.org/10.1016/j.conbuildmat.2017.10.109.
DOI: 10.1016/j.conbuildmat.2017.10.109
Google Scholar
[28]
Wyk, L.V., 2007. The Application of Natural Fibre Composites in Construction: A Research Case, in: Study', Sixth International Conference on Composite Science and Technology, Durban, South Africa. p.22–24.
Google Scholar