Experimental Investigation on Mechanical and Acoustic Performance of Miscanthus - Lime Composites

Article Preview

Abstract:

The environmental burdens attributable to buildings remain relatively high. The built environment is responsible for more than one-third of the global energy consumption and nearly 40% of global CO2 emissions. In the context of increasing the sustainability of the built environment, bio-based building materials have gained a growing interest for their application in building envelopes. Miscanthus giganteus (elephant grass) is a perennial, cost effective and sustainable source of fibres for the development of bio-composites. This experimental study evaluates mechanical and acoustic properties of miscanthus - lime composites for their potential use in renovations and new-build houses, in South West England. The impact of binder to aggregate mass ratio and density on compressive strength is investigated. Moreover, the effect of aggregate particle size on the acoustic performance of miscanthus - lime composites is presented. It is shown that the initial fresh density has little effect on compressive strength compared with that of binder content. The acoustic tests results show that the use of small size particles improves the acoustic performance of miscanthus - lime composites with recorded high transmission loss and sound absorption coefficient values.

You might also be interested in these eBooks

Info:

Pages:

12-23

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Amziane, S., 2016. Overview on bio-based building material made with plant aggregate. RILEM Technical Letters 9.

DOI: 10.21809/rilemtechlett.2016.9

Google Scholar

[2] Amziane, S., Collet, F. (Eds.), 2017. Bio-aggregates Based Building Materials : State-of-the-Art Report of the RILEM Technical Committee 236-BBM, RILEM State-of-the-Art Reports. Springer Netherlands. https://doi.org/10.1007/978-94-024-1031-0.

DOI: 10.1007/978-94-024-1031-0

Google Scholar

[3] Amziane, S., Collet, F., Lawrence, M., Magniont, C., Picandet, V., Sonebi, M., 2017. Recommendation of the RILEM TC 236-BBM: characterisation testing of hemp shiv to determine the initial water content, water absorption, dry density, particle size distribution and thermal conductivity. Mater Struct 50, 167. https://doi.org/10.1617/s11527-017-1029-3.

DOI: 10.1617/s11527-017-1029-3

Google Scholar

[4] Arnaud, L., Gourlay, E., 2012. Experimental study of parameters influencing mechanical properties of hemp concretes. Construction and Building Materials 28, 50–56. https://doi.org/10.1016/j.conbuildmat.2011.07.052.

DOI: 10.1016/j.conbuildmat.2011.07.052

Google Scholar

[5] Cérézo, V., 2005. Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales : approche expérimentale et modélisation théorique (PhD thesis). http://www.theses.fr. Lyon, INSA.

Google Scholar

[6] Chen, Y., Yu, Q.L., Brouwers, H.J.H., 2017. Acoustic performance and microstructural analysis of bio-based lightweight concrete containing miscanthus. Construction and Building Materials 157, 839–851. https://doi.org/10.1016/j.conbuildmat.2017.09.161.

DOI: 10.1016/j.conbuildmat.2017.09.161

Google Scholar

[7] Collet-Foucault, F., 2004. Caractérisation hydrique et thermique de matériaux de génie civil à faibles impacts environnementaux (PhD thesis). http://www.theses.fr. Rennes, INSA.

Google Scholar

[8] E33 Committee, 2017. Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method. ASTM International. https://doi.org/10.1520/E2611-17.

DOI: 10.1520/e2611-09

Google Scholar

[9] Eschenhagen, A., Raj, M., Rodrigo, N., Zamora, A., Labonne, L., Evon, P., Welemane, H., 2019. Investigation of Miscanthus and Sunflower Stalk Fiber-Reinforced Composites for Insulation Applications. Advances in Civil Engineering 2019, 1–7. https://doi.org/10.1155/2019/9328087.

DOI: 10.1155/2019/9328087

Google Scholar

[10] Glé, P., 2013. Acoustique des Matériaux du Bâtiment à base de Fibres et Particules Végétales - Outils de Caractérisation, Modélisation et Optimisation (PhD thesis). INSA de Lyon.

Google Scholar

[11] Glé, P., Gourdon, E., Arnaud, L., 2011. Acoustical properties of materials made of vegetable particles with several scales of porosity. Applied Acoustics 72, 249–259. https://doi.org/10.1016/j.apacoust.2010.11.003.

DOI: 10.1016/j.apacoust.2010.11.003

Google Scholar

[12] Kinnane, O., Reilly, A., Grimes, J., Pavia, S., Walker, R., 2016. Acoustic absorption of hemp-lime construction. Construction and Building Materials 122, 674–682. https://doi.org/10.1016/j.conbuildmat.2016.06.106.

DOI: 10.1016/j.conbuildmat.2016.06.106

Google Scholar

[13] Kioy, S., 2013. Lime-hemp composites: compressive strength and résistance to fungal attacks. MEng dissertation, recalled in Appendix 1: Resistance to compression and stress-strain properties, in: Hemp Lime Construction, A Guide to Building With Hemp Lime Composites. IHS BRE Press.

DOI: 10.7190/shu-thesis-00266

Google Scholar

[14] Magniont, C., Escadeillas, G., 2017. Chemical Composition of Bio-aggregates and Their Interactions with Mineral Binders, in: Amziane, S., Collet, F. (Eds.), Bio-Aggregates Based Building Materials : State-of-the-Art Report of the RILEM Technical Committee 236-BBM, RILEM State-of-the-Art Reports. Springer Netherlands, Dordrecht, p.1–37. https://doi.org/10.1007/978-94-024-1031-0_1.

DOI: 10.1007/978-94-024-1031-0

Google Scholar

[15] Mazhoud, B., 2017. Elaboration et caractérisation mécanique, hygrique et thermique de composites bio-sourcés (PhD thesis). INSA de Rennes.

Google Scholar

[16] Moll, L., Wever, C., Völkering, G., Pude, R., 2020. Increase of Miscanthus Cultivation with New Roles in Materials Production—A Review. Agronomy 10, 308. https://doi.org/10.3390/agronomy10020308.

DOI: 10.3390/agronomy10020308

Google Scholar

[17] Nguyen, T.-T., Picandet, V., Amziane, S., Baley, C., 2009. Influence of compactness and hemp hurd characteristics on the mechanical properties of lime and hemp concrete. European Journal of Environmental and Civil Engineering 13, 1039–1050. https://doi.org/10.1080/19648189.2009.9693171.

DOI: 10.1080/19648189.2009.9693171

Google Scholar

[18] Nozahic, V., Amziane, S., Torrent, G., Saïdi, K., De Baynast, H., 2012. Design of green concrete made of plant-derived aggregates and a pumice–lime binder. Cement and Concrete Composites 34, 231–241. https://doi.org/10.1016/j.cemconcomp.2011.09.002.

DOI: 10.1016/j.cemconcomp.2011.09.002

Google Scholar

[19] Ntimugura, F., Vinai, R., Harper, A., Walker, P., 2020. Mechanical, thermal, hygroscopic and acoustic properties of bio-aggregates – lime and alkali - activated insulating composite materials: A review of current status and prospects for miscanthus as an innovative resource in the South West of England. Sustainable Materials and Technologies e00211. https://doi.org/10.1016/j.susmat.2020.e00211.

DOI: 10.1016/j.susmat.2020.e00211

Google Scholar

[20] Ntimugura, F., Vinai, R., Harper, A.B., Walker, P., 2021. Environmental performance of miscanthus-lime lightweight concrete using life cycle assessment: Application in external wall assemblies. Sustainable Materials and Technologies 28, e00253. https://doi.org/10.1016/j.susmat.2021.e00253.

DOI: 10.1016/j.susmat.2021.e00253

Google Scholar

[21] Peñaloza, D., Erlandsson, M., Falk, A., 2016. Exploring the climate impact effects of increased use of bio-based materials in buildings. Construction and Building Materials 125, 219–226. https://doi.org/10.1016/j.conbuildmat.2016.08.041.

DOI: 10.1016/j.conbuildmat.2016.08.041

Google Scholar

[22] Pude, R., Treseler, C.H., Trettin, R., Noga, G., 2005. Suitability of Miscanthus genotypes for lightweight concrete.

Google Scholar

[23] Savastano, H., Santos, S.F., Fiorelli, J., Agopyan, V., 2016. 19 - Sustainable use of vegetable fibres and particles in civil construction, in: Khatib, J.M. (Ed.), Sustainability of Construction Materials (Second Edition), Woodhead Publishing Series in Civil and Structural Engineering. Woodhead Publishing, p.477–520. https://doi.org/10.1016/B978-0-08-100370-1.00019-6.

DOI: 10.1016/b978-0-08-100370-1.00019-6

Google Scholar

[24] Shravage, P., Jain, S., Karanth, N., 2010. Effect of intrinsic parameters on sound absorption and transmission loss: A parametric study. The Journal of the Acoustical Society of America 127, 1735–1735. https://doi.org/10.1121/1.3383465.

DOI: 10.1121/1.3383465

Google Scholar

[25] Sunderland, L., 2015. Tackling embodied carbon in buildings. UK Green Building Council 16.

Google Scholar

[26] Tronet, P., Lecompte, T., Picandet, V., Baley, C., 2016. Study of lime hemp concrete (LHC) – Mix design, casting process and mechanical behaviour. Cement and Concrete Composites 67, 60–72. https://doi.org/10.1016/j.cemconcomp.2015.12.004.

DOI: 10.1016/j.cemconcomp.2015.12.004

Google Scholar

[27] Williams, J., Lawrence, M., Walker, P., 2018. The influence of constituents on the properties of the bio-aggregate composite hemp-lime. Construction and Building Materials 159, 9–17. https://doi.org/10.1016/j.conbuildmat.2017.10.109.

DOI: 10.1016/j.conbuildmat.2017.10.109

Google Scholar

[28] Wyk, L.V., 2007. The Application of Natural Fibre Composites in Construction: A Research Case, in: Study', Sixth International Conference on Composite Science and Technology, Durban, South Africa. p.22–24.

Google Scholar