[1]
Akanbi, L.A., Oyedele, L.O., Omoteso, K., Bilal, M., Akinade, O.O., Ajayi, A.O., Delgado, and Owolabi, H.A., 2019. Disassembly and deconstruction analytics system (D-DAS) for construction in a circular economy. Journal of cleaner production, 223, p.386.
DOI: 10.1016/j.jclepro.2019.03.172
Google Scholar
[2]
Böttger, W., van Olphen, W., Sluis, J. and Lepelaar, M., 2019. Development of interactive facade elements on base of waste materials of water companies. Academic Journal of Civil Engineering, 37(2), pp.672-677.
Google Scholar
[3]
BSI, BS EN 15804:2012+A2:2019. Sustainability of construction works — Environmental product declarations — Core rules for the product category of construction products, (2019).
DOI: 10.3403/30259256
Google Scholar
[4]
BSI, BS EN ISO 6946:2007. Building components and building elements-thermal resistance and thermal resistance-calculation method, (2007).
DOI: 10.3403/00942964u
Google Scholar
[5]
da Silva, C.F.F., Rana, C., Maskell, D., Dengel, A., Ansell, M.P. and Ball, R.J.,2016. Influence of eco-materials on indoor air quality. Strategies for applying the circular economy to prefabricated buildings. Green Materials, 4(2), pp.72-80.
DOI: 10.1680/jgrma.16.00002
Google Scholar
[6]
Cancer Council 2017 Causes of cancer, Cancer Council, viewed 21 May 2018, <https://www.cancer.org.au/about-cancer/causes-of-cancer/>.
Google Scholar
[7]
Esposito, M., TT (March 13, 2018). The development of the circular economy shapes new managerial and policy implications. California Management Review, 60, pp.5-19.
Google Scholar
[8]
EuGeos, (2020). EuGeos' 1584_A2-IA Database V4.1: method. https://nexus.openlca.org/ database/EuGeos'%2015804-IA.
Google Scholar
[9]
EU, 2020. 2030 climate and energy framework. https://ec.europa.eu/clima/policies/strategies/ 2030_en.
Google Scholar
[10]
Fouquet, M., Levasseur, A., Margni, M., Lebert, A., Lasvaux, S., Souyri, B., Buhé, C. and Woloszyn, M., 2015. Methodological challenges and developments in LCA of low energy buildings: Application to biogenic carbon and global warming assessment. Building and Environment, 90, pp.51-59.
DOI: 10.1016/j.buildenv.2015.03.022
Google Scholar
[11]
Geldermans, B. and Jacobson, L. R., 2015. Circular material and product flows in buildings. Statewide Agricultural Land Use Baseline 2015 1(October), 1–23.
Google Scholar
[12]
Henry, B., Ledgard, S., Nebel, B. and Wiedemann, T., 2017. Guidelines for conducting a life cycle assessment of the environmental performance of wool textiles. Brussels: International Wool Textile Organisation–Wool LCA Technical Advisory Group. Last accessed, 29.
DOI: 10.1016/b978-0-08-100169-1.00010-1
Google Scholar
[13]
IEA (International Energy Agency), 2018. 2018 Global Status Report, Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. report for the Global Alliance for Buildings and Construction (GlobalABC).
Google Scholar
[14]
Ilic, D.D., Eriksson, O., Ödlund, L. and Åberg, M., 2018. No zero-burden assumption in a circular economy. Journal of Cleaner Production, 182, pp.352-362.
DOI: 10.1016/j.jclepro.2018.02.031
Google Scholar
[15]
Ip, K. and Miller, A., 2012. Life cycle greenhouse gas emissions of hemp–lime wall constructions in the UK. Resources, Conservation and Recycling, n 69, pp.1-9.
DOI: 10.1016/j.resconrec.2012.09.001
Google Scholar
[16]
Jansen, B.W., van Stijn, A., Gruis, V. and van Bortel, G., 2020. A circular economy life cycle costing model (CE-LCC) for building components. Resources, Conservation and Recycling, 161, p.104857.
DOI: 10.1016/j.resconrec.2020.104857
Google Scholar
[17]
Kallakas, H., Liblik, J., Alao, P.F., Poltimäe, T., Just, A. and Kers, J., 2019, June. Fire and Mechanical Properties of Hemp and Clay Boards for Timber Structures. In IOP Conference Series: Earth and Environmental Science (Vol. 290, No. 1, p.012019). IOP Publishing.
DOI: 10.1088/1755-1315/290/1/012019
Google Scholar
[18]
Lawrence, M., Shea, A., Walker, P. and De Wilde, P., 2013. Hygrothermal performance of bio-based insulation materials. Proceedings of the Institution of Civil Engineers-Construction Materials, 166(4), pp.257-263.
DOI: 10.1680/coma.12.00031
Google Scholar
[19]
LETI London Energy Transformation Initiative, 2020. Climate Emergency Design Guide. LETI: London, UK.
Google Scholar
[20]
Maskell, D., Thomson, A. and Walker, P., 2018. Multi-criteria selection of building materials. Proceedings of the Institution of Civil Engineers–Construction Materials, 171(2), pp.49-58.
DOI: 10.1680/jcoma.16.00064
Google Scholar
[21]
Mesa, J., Esparragoza, I. and Maury, H., 2018. Developing a set of sustainability indicators for product families based on the circular economy model. Journal of cleaner production, 196, pp.1429-1442.
DOI: 10.1016/j.jclepro.2018.06.131
Google Scholar
[22]
Minunno, R., O'Grady, T., Morrison, G.M., Gruner, R.L. and Colling, M., 2018. Strategies for applying the circular economy to prefabricated buildings. Buildings, 8(9), p.125.
DOI: 10.3390/buildings8090125
Google Scholar
[23]
Mirzaie, S., Thuring, M. and Allacker, K., 2020. End-of-life modelling of buildings to support more informed decisions towards achieving circular economy targets. The International Journal of Life Cycle Assessment, pp.1-18.
DOI: 10.1007/s11367-020-01807-8
Google Scholar
[24]
NFU, 2018. The Value of the Sheep Industry: North East, South West and North West Region. [Online]. Accessed 9 November 2020. https://www.nfuonline.com/assets/106083.
Google Scholar
[25]
Niero, M. and Olsen, S.I., 2016. Circular economy: to be or not to be in a closed product loop? A Life cycle assessment of aluminium cans with inclusion of alloying elements. Resources, Conservation and Recycling, 114, pp.18-31.
DOI: 10.1016/j.resconrec.2016.06.023
Google Scholar
[26]
Nijgh, M.P. and Veljkovic, M., 2019, February. Design of composite flooring systems for reuse. In IOP Conference Series: Earth and Environmental Science, Vol. 225, No. 012026, pp.1755-1315.
DOI: 10.1088/1755-1315/225/1/012026
Google Scholar
[27]
Palumbo, M., Lacasta, A.M., Holcroft, N., Shea, A. and Walker, P., 2016. Determination of hygrothermal parameters of experimental and commercial bio-based insulation materials. Construction and Building Materials, 124, pp.269-275.
DOI: 10.1016/j.conbuildmat.2016.07.106
Google Scholar
[28]
Pittau, F., Amato, C., Cuffari, S., Iannaccone, G. and Malighetti, L.E., 2019, July. Environmental consequences of refurbishment vs. demolition and reconstruction: a comparative life cycle assessment of an Italian case study. In IOP Conference Series: Earth and Environmental Science (Vol. 296, No. 1, p.012037). IOP Publishing.
DOI: 10.1088/1755-1315/296/1/012037
Google Scholar
[29]
Ranta, V., Aarikka-Stenroos, L. and Mäkinen, S.J., 2018. Creating value in the circular economy: A structured multiple-case analysis of business models. Journal of cleaner production, 201, pp.988-1000.
DOI: 10.1016/j.jclepro.2018.08.072
Google Scholar
[30]
Roberts, M., Allen, S. and Coley, D., 2020. Life cycle assessment in the building design process–A systematic literature review. Building and Environment, p.107274.
DOI: 10.1016/j.buildenv.2020.107274
Google Scholar
[31]
Sariatli, F., 2017. Linear Economy versus Circular Economy: A comparative and analyzer study for Optimization of Economy for Sustainability. Visegrad Journal on Bioeconomy and Sustainable Development, 6(1), pp.31-34.
DOI: 10.1515/vjbsd-2017-0005
Google Scholar
[32]
WGBC World Green Building Council, 2019. Bringing embodied carbon upfront: Coordinated action for the building and construction sector to tackle embodied carbon.
Google Scholar