[1]
F. Chyliński, A. Michalik, M. Kozicki, Effectiveness of curing compounds for concrete, Mater. 15 (2022) 2699.
DOI: 10.3390/ma15072699
Google Scholar
[2]
V. Gokulanathan, K. Arun, P. Priyadharshini, Fresh and hardened properties of five non-potable water mixed and cured concrete: A comprehensive review, Constr. Build. Mater. 309 (2021) 125089.
DOI: 10.1016/j.conbuildmat.2021.125089
Google Scholar
[3]
S. Surana, R.G. Pillai, M. Santhanam, Performance evaluation of curing compounds using durability parameters, Constr. Build. Mater. 148 (2017) 538-547.
DOI: 10.1016/j.conbuildmat.2017.05.055
Google Scholar
[4]
D. Xu, J. Tang, X. Hu, C. Yu, F. Han, S. Sun, J. Liu, The influence of curing regimes on hydration, microstructure and compressive strength of ultra-high performance concrete: A review, J. Build. Eng. 107401 (2023).
DOI: 10.1016/j.jobe.2023.107401
Google Scholar
[5]
M. Lenzen, D. Moran, A. Bhaduri, K. Kanemoto, M. Bekchanov, A. Geschke, B. Foran, International trade of scarce water, Ecol. Econ. 94 (2013) 78-85.
DOI: 10.1016/j.ecolecon.2013.06.018
Google Scholar
[6]
K. Meena, S. Luhar, Effect of wastewater on properties of concrete, J. Build. Eng. 21 (2019) 106-112.
Google Scholar
[7]
M.S. Hassani, G. Asadollahfardi, S.F. Saghravani, S. Jafari, F.S. Peighambarzadeh, The difference in chloride ion diffusion coefficient of concrete made with drinking water and wastewater, Constr. Build. Mater. 231 (2020) 117182.
DOI: 10.1016/j.conbuildmat.2019.117182
Google Scholar
[8]
N. Hamzah, H. Mohd Saman, M.H. Baghban, A.R. Mohd Sam, I. Faridmehr, M.N. Muhd Sidek, G.F. Huseien, A review on the use of self-curing agents and its mechanism in high-performance cementitious materials, Build. 12 (2022) 152.
DOI: 10.3390/buildings12020152
Google Scholar
[9]
S.A. Miller, A. Horvath, P.J.M. Monteiro, Impacts of booming concrete production on water resources worldwide, Nat. Sustain. 1 (2018) 69-76.
DOI: 10.1038/s41893-017-0009-5
Google Scholar
[10]
R.D. Hooton, J.A. Bickley, Design for durability: The key to improving concrete sustainability, Constr. Build. Mater. 67 (2014) 422-430.
DOI: 10.1016/j.conbuildmat.2013.12.016
Google Scholar
[11]
T.G. Atsbha, S. Zhutovsky, The effect of external curing methods on the development of mechanical and durability-related properties of normal-strength concrete, Constr. Build. Mater. 324 (2022) 126706.
DOI: 10.1016/j.conbuildmat.2022.126706
Google Scholar
[12]
K. Rashid, A. Yazdanbakhsh, M.U. Rehman, Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material, J. Clean. Prod. 224 (2019) 396-410.
DOI: 10.1016/j.jclepro.2019.03.197
Google Scholar
[13]
G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett. 17 (2019) 145-155.
DOI: 10.1007/s10311-018-0785-9
Google Scholar
[14]
Y. Yan, J. Huang, X. Qiu, D. Zhuang, H. Liu, C. Huang, X. Wu, X. Cui, A strong underwater adhesive that totally cured in water, Chem. Eng. J. 431 (2022) 133460.
DOI: 10.1016/j.cej.2021.133460
Google Scholar
[15]
C. Thomas, J. Setién, J.A. Polanco, A.I. Cimentada, C. Medina, Influence of curing conditions on recycled aggregate concrete, Constr. Build. Mater. 172 (2018) 618-625.
DOI: 10.1016/j.conbuildmat.2018.04.009
Google Scholar
[16]
L. Yang, C. Shi, J. Liu, Z. Wu, Factors affecting the effectiveness of internal curing: A review, Constr. Build. Mater. 267 (2021) 121017.
DOI: 10.1016/j.conbuildmat.2020.121017
Google Scholar
[17]
G. Asadollahfardi, A.R. Mahdavi, The feasibility of using treated industrial wastewater to produce concrete, Struct. Concr. 20 (2019) 123-132.
DOI: 10.1002/suco.201700255
Google Scholar
[18]
N.M.A. Al-Joulani, Effect of wastewater type on concrete properties, Int. J. Appl. Eng. Res. 10 (2015) 39865-39870.
Google Scholar
[19]
S. Ahmed, Y. Alhoubi, N. Elmesalami, S. Yehia, F. Abed, Effect of recycled aggregates and treated wastewater on concrete subjected to different exposure conditions, Constr. Build. Mater. 266 (2021) 120930.
DOI: 10.1016/j.conbuildmat.2020.120930
Google Scholar
[20]
M.F. Arooj, F. Haseeb, A.I. Butt, M. Irfan-Ul-Hassan, H. Batool, S. Kibria, Z. Javed, H. Nawaz, S. Asif, A sustainable approach to reuse of treated domestic wastewater in construction incorporating admixtures, J. Build. Eng. 33 (2021) 101616.
DOI: 10.1016/j.jobe.2020.101616
Google Scholar
[21]
M.E.P. Almeida, A.L. Tonetti, Treated wastewater as a sustainable alternative to concrete manufacturing: a literature review on its performance, Int. J. Environ. Sci. Technol. 20 (2023) 8157-8174.
DOI: 10.1007/s13762-022-04686-8
Google Scholar
[22]
H. Varshney, R.A. Khan, I.K. Khan, Sustainable use of different wastewater in concrete construction: A review, J. Build. Eng. 41 (2021) 102411.
DOI: 10.1016/j.jobe.2021.102411
Google Scholar
[23]
X. Yao, Z. Xu, J. Guan, L. Liu, L. Shangguan, J. Xi, Influence of wastewater content on mechanical properties, microstructure, and durability of concrete, Build. 12 (2022) 1343.
DOI: 10.3390/buildings12091343
Google Scholar
[24]
F.Z. Bouaich, W. Maherzi, F. El-Hajjaji, N.E. Abriak, M. Benzerzour, M. Taleb, Z. Rais, Reuse of treated wastewater and non-potable groundwater in the manufacture of concrete: major challenge of environmental preservation, Environ. Sci. Pollut. Res. 29 (2022) 146-157.
DOI: 10.1007/s11356-021-15561-3
Google Scholar
[25]
I.B.S. Poblete, F.A. de Queiroz, J.L. de Medeiros, Sewage-water treatment with bio-energy production and carbon capture and storage, Chemosphere 286 (2022) 131763.
DOI: 10.1016/j.chemosphere.2021.131763
Google Scholar
[26]
K. Styszko, J. Durak, B. Kończak, M. Głodniok, A. Borgulat, The impact of sewage sludge processing on the safety of its use, Sci. Rep. 12 (2022) 12227.
DOI: 10.1038/s41598-022-16354-5
Google Scholar
[27]
H. Kamyab, A. Yuzir, V. Ashokkumar, S.E. Hosseini, B. Balasubramanian, I. Kirpichnikova, Review of the application of gasification and combustion technology and waste-to-energy technologies in sewage sludge treatment, Fuel 316 (2022) 123199.
DOI: 10.1016/j.fuel.2022.123199
Google Scholar
[28]
M.A. Khalaf, C.C. Ban, M. Ramli, The constituents, properties and application of heavyweight concrete: A review, Constr. Build. Mater. 215 (2019) 73-89.
DOI: 10.1016/j.conbuildmat.2019.04.146
Google Scholar
[29]
M. Sakr, M.M. Mohamed, M.A. Maraqa, M.A. Hamouda, A.A. Hassan, J. Ali, J. Jung, A critical review of the recent developments in micro–nano bubbles applications for domestic and industrial wastewater treatment, Alex. Eng. J. 61 (2022) 6591-6612.
DOI: 10.1016/j.aej.2021.11.041
Google Scholar
[30]
I.E. Napper, F.N.F. Parker-Jurd, S.L. Wright, R.C. Thompson, Examining the release of synthetic microfibres to the environment via two major pathways: Atmospheric deposition and treated wastewater effluent, Sci. Total Environ. 857 (2023) 159317.
DOI: 10.1016/j.scitotenv.2022.159317
Google Scholar
[31]
G. Mao, Y. Han, X. Liu, J. Crittenden, N. Huang, U.M. Ahmad, Technology status and trends of industrial wastewater treatment: A patent analysis, Chemosphere 288 (2022) 132483.
DOI: 10.1016/j.chemosphere.2021.132483
Google Scholar
[32]
M.M. Rahman, T. Haque, A. Mahmud, M. Al Amin, M.S. Hossain, M.Y. Hasan, L. Bai, Drinking water quality assessment based on index values incorporating WHO guidelines and Bangladesh standards, Phys. Chem. Earth 129 (2023) 103353.
DOI: 10.1016/j.pce.2022.103353
Google Scholar
[33]
A. Saravanan, P.S. Kumar, R.V. Hemavathy, S. Jeevanantham, M.J. Jawahar, J.P. Neshaanthini, R. Saravanan, A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives, Chemosphere 135713 (2022).
DOI: 10.1016/j.chemosphere.2022.135713
Google Scholar
[34]
Y.S. Wang, S.Q. Luo, X.Y. Li, Z.X. Li, P.P. Huang, L.L. Zhou, W.K. Wang, Insights into the highly efficient treatment of dyeing wastewater using algal bloom derived activated carbon with wide-range adaptability to solution pH and temperature, Bioresour. Technol. 349 (2022) 126883.
DOI: 10.1016/j.biortech.2022.126883
Google Scholar
[35]
M.T. Sturm, E. Myers, D. Schober, C. Thege, A. Korzin, K. Schuhen, Adaptable Process Design as a Key for Sustainability Upgrades in Wastewater Treatment: Comparative Study on the Removal of Micropollutants by Advanced Oxidation and Granular Activated Carbon Processing at a German Municipal Wastewater Treatment Plant, Sustain. 14 (2022) 11605.
DOI: 10.3390/su141811605
Google Scholar
[36]
D. Wu, W. Peng, X. Yu, X. Dong, M. Lai, Z. Liang, S. Zeng, Biochar alleviating heavy metals phytotoxicity in sludge-amended soil varies with plant adaptability, Environ. Res. 215 (2022) 114248.
DOI: 10.1016/j.envres.2022.114248
Google Scholar