[1]
Intergovernmental Panel on Climate Change (IPCC), Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2023. https://doi.org/.
DOI: 10.1017/9781009157896
Google Scholar
[2]
World Wind Energy Association, WWEA, 2022. Statistics for the Global wind-energy sector., (n.d.).
Google Scholar
[3]
J. Joustra, B. Flipsen, R. Balkenende, Structural reuse of wind turbine blades through segmentation, Composites Part C: Open Access 5 (2021). https://doi.org/10.1016/j.jcomc. 2021.100137.
DOI: 10.1016/j.jcomc.2021.100137
Google Scholar
[4]
A. Yazdanbakhsh, L.C. Bank, K.-A. Rieder, Y. Tian, C. Chen, Concrete with discrete slender elements from mechanically recycled wind turbine blades, Resour Conserv Recycl 128 (2018) 11–21.
DOI: 10.1016/j.resconrec.2017.08.005
Google Scholar
[5]
J. Joustra, B. Flipsen, R. Balkenende, Structural reuse of wind turbine blades through segmentation, Composites Part C: Open Access 5 (2021) 100137. https://doi.org/.
DOI: 10.1016/j.jcomc.2021.100137
Google Scholar
[6]
C. Peeren, J. Jongert, J. de Krieger, F. Schiferli, J. Bergsma, Blade Made, (2012).
Google Scholar
[7]
M. Rani, P. Choudhary, V. Krishnan, S. Zafar, A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades, Compos B Eng 215 (2021).
DOI: 10.1016/j.compositesb.2021.108768
Google Scholar
[8]
J. Manso-Morato, N. Hurtado-Alonso, V. Revilla-Cuesta, M. Skaf, V. Ortega-López, J.M. Manso, Caracterización e idoneidad de la utilización de triturado de palas de aerogenerador en la producción de hormigón (Characterization and suitability for use of crushed wind-turbine blade in concrete production), in: II International Córdoba Eco-Concrete Conference, Universidad de Córdoba (UCOPress), Córdoba, 2023: p.16–20. eISBN: 978-84-9927-761-5.
DOI: 10.2139/ssrn.4408739
Google Scholar
[9]
G.-T. Xu, M.-J. Liu, Y. Xiang, B. Fu, Valorization of macro fibers recycled from decommissioned turbine blades as discrete reinforcement in concrete, J Clean Prod 379 (2022).
DOI: 10.1016/j.jclepro.2022.134550
Google Scholar
[10]
A.R.G. de Azevedo, J. Alexandre, G. de C. Xavier, L.G. Pedroti, Recycling paper industry effluent sludge for use in mortars: A sustainability perspective, J Clean Prod 192 (2018) 335–346. https://doi.org/.
DOI: 10.1016/j.jclepro.2018.05.011
Google Scholar
[11]
EN-Euronorm, European Comittee for Standardization, Rue de Stassart, 36. Belgium-1050 Burssels, 2020.
Google Scholar
[12]
S.A. Hadigheh, R.J. Gravina, S. Setunge, Influence of the Processing Techniques on the Bond Characteristics in Externally Bonded Joints: Experimental and Analytical Investigations, Journal of Composites for Construction 20 (2016) 04015081.
DOI: 10.1061/(ASCE)CC.1943-5614.0000646
Google Scholar
[13]
S.A. Hadigheh, F. Ke, S. Kashi, 3D acid diffusion model for FRP-strengthened reinforced concrete structures: Long-term durability prediction, Constr Build Mater 261 (2020) 120548. https://doi.org/.
DOI: 10.1016/j.conbuildmat.2020.120548
Google Scholar
[14]
G.-T. Xu, M.-J. Liu, Y. Xiang, B. Fu, Valorization of macro fibers recycled from decommissioned turbine blades as discrete reinforcement in concrete, J Clean Prod 379 (2022).
DOI: 10.1016/j.jclepro.2022.134550
Google Scholar
[15]
Eurocode 2, Design of Concrete Structures. Part 1-1: General Rules and Rules for Buildings (EN 1992-1-1), CEN (European Comittee for Standardization), 2010.
Google Scholar