[1]
Huang, L., Su, L., Xie, J., Lu, Z., Li, P., Hu, R., & Yang, S. (2022). Dynamic splitting behaviour of ultra-high-performance concrete confined with carbon-fibre-reinforced polymer. Composite Structures, 284, 115155.
DOI: 10.1016/j.compstruct.2021.115155
Google Scholar
[2]
Deng, W. Q., & Zhao, J. (2011). Structure Characteristics and Mechanical Properties of Fiber Reinforced Concrete. Advanced Materials Research, 168, 1556-1560.
DOI: 10.4028/www.scientific.net/amr.168-170.1556
Google Scholar
[3]
Farooqi, M. U., & Ali, M. (2023). A study on natural fibre reinforced concrete from materials to structural applications. Arabian Journal for Science and Engineering, 48(4), 4471-4491.
DOI: 10.1007/s13369-022-06977-1
Google Scholar
[4]
Tayeh, B., Hadzima-Nyarko, M., Riad, M. Y. R., & Hafez, R. D. A. (2023). Behavior of Ultra-High-Performance concrete with Hybrid synthetic fiber waste exposed to elevated temperatures. Buildings, 13(1), 129.
DOI: 10.3390/buildings13010129
Google Scholar
[5]
Beshara, F.B.A., Shaaban, I.G., & Mustafa, T. S. (2012). Nominal flexural strength of high strength fiber reinforced concrete beams. Arabian Journal for Science and Engineering, 37, 291-301.
DOI: 10.1007/s13369-012-0172-y
Google Scholar
[6]
Smarzewski, P. (2023). Fresh and Mechanical Properties of high-performance self-compacting concrete containing ground granulated blast furnace slag and polypropylene fibres. Applied Sciences, 13(3), 1975.
DOI: 10.3390/app13031975
Google Scholar
[7]
Beshara, F. B. A., Shaaban, I. G., & Mustafa, T. S. (2012). Nominal flexural strength of high strength fiber reinforced concrete beams. Arabian Journal for Science and Engineering, 37, 291-301.
DOI: 10.1007/s13369-012-0172-y
Google Scholar
[8]
Zollo, R.F. Collated Fibrillated Polypropylene Fibers in FRC; ACI Special Publication (SP 81-19): Indianapolis, IN, USA, 1984; p.397–409.
Google Scholar
[9]
Wang, X., Wu, Q., & Chen, W. (2023). Experimental Study on the Impact Resistance of Steel Fiber Reinforced All-Lightweight Concrete Beams under Single and Hybrid Mixing Conditions. Buildings, 13(5), 1251.
DOI: 10.3390/buildings13051251
Google Scholar
[10]
Lucis, V., Annamaneni, K. K., & Krasnikovs, A. (2022). Concrete reinforced by hybrid mix of short fibers under bending. Fibers, 10(2), 11.
DOI: 10.3390/fib10020011
Google Scholar
[11]
Barros, J. A., & Figueiras, J. A. (1999). Flexural behavior of SFRC: testing and modeling. Journal of materials in civil engineering, 11(4), 331-339.
DOI: 10.1061/(asce)0899-1561(1999)11:4(331)
Google Scholar
[12]
Khaloo, A. R., & Afshari, M. (2005). Flexural behaviour of small steel fibre reinforced concrete slabs. Cement and concrete composites, 27(1), 141-149.
DOI: 10.1016/j.cemconcomp.2004.03.004
Google Scholar
[13]
Meng, W., & Khayat, K. H. (2016, April). Flexural performance of ultra-high performance concrete ballastless track slabs. In ASME/IEEE Joint Rail Conference (Vol. 49675, p. V001T01A031). American Society of Mechanical Engineers.
DOI: 10.1115/jrc2016-5814
Google Scholar
[14]
Anas, S. M., Alam, M., & Umair, M. (2021, June). Experimental and numerical investigations on performance of reinforced concrete slabs under explosive-induced air-blast loading: A state-of-the-art review. In Structures (Vol. 31, pp.428-461). Elsevier.
DOI: 10.1016/j.istruc.2021.01.102
Google Scholar
[15]
Maj, M., & Ubysz, A. (2021). Cracking of composite fiber-reinforced concrete foundation slabs due to shrinkage. Materials Today: Proceedings, 38, 2092-2098.
DOI: 10.1016/j.matpr.2020.10.155
Google Scholar
[16]
Gameliak, I., Kharchenko, A., Dmytrychenko, A., Tsybulskyi, V., & Hustieliev, O. (2022). Research of strength and condition of cement-concrete pavement on bridges by non-destructive methods. Strength of Materials and Theoryof Structures, (108), 243-254
DOI: 10.32347/2410-2547.2022.108.243-254
Google Scholar
[17]
Faisal, F. W., & Ashour, S. A. (1992). Mechanical properties of high-strength fiber reinforced concrete. ACI Material Journal, 89(5), 449-455.
Google Scholar
[18]
Khan, M., & Ali, M. (2016). Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Construction and Building Materials, 125, 800-808.
DOI: 10.1016/j.conbuildmat.2016.08.111
Google Scholar
[19]
Mohod, M. V. (2012). Performance of steel fiber reinforced concrete. International Journal of Engineering and Science, 1(12), 1-4.
Google Scholar
[20]
Ghaffar, A., Chavhan, A. S., & Tatwawadi, R. S. (2014). Steel fibre reinforced concrete. International Journal of Engineering Trends and Technology (IJETT), 9(15), 791-797.
DOI: 10.14445/22315381/ijett-v9p349
Google Scholar
[21]
Pandit, R. D., & Jamkar, S. S. (2013). Mechanical Behavior of High Strength Fibre Reinforced Concrete. Int. J. Eng. Res. Appl., 3(6), 1617-1624.
Google Scholar
[22]
Harle, S., & Tantarpale, N. (2014). Steel Fiber Reinforced Concrete & Its Properties. International Journal of Engineering Sciences and Research Technology, 30-32.
Google Scholar
[23]
Yazıcı, Ş., İnan, G., & Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21(6), 1250-1253.
DOI: 10.1016/j.conbuildmat.2006.05.025
Google Scholar
[24]
Shen, D., Liu, C., Luo, Y., Shao, H., Zhou, X., & Bai, S. (2023). Early-age autogenous shrinkage, tensile creep, and restrained cracking behavior of ultra-high-performance concrete incorporating polypropylene fibers. Cement and Concrete Composites, 138, 104948.
DOI: 10.1016/j.cemconcomp.2023.104948
Google Scholar
[25]
Kadela, M., Małek, M., Jackowski, M., Kunikowski, M., Klimek, A., Dudek, D., & Rośkowicz, M. (2023). Recycling of Tire-Derived Fiber: The Contribution of Steel Cord on the Properties of Lightweight Concrete Based on Perlite Aggregate. Materials, 16(5), 2124.
DOI: 10.3390/ma16052124
Google Scholar
[26]
Aksoylu, C., Özkılıç, Y. O., Hadzima-Nyarko, M., Işık, E., & Arslan, M. H. (2022). Investigation on improvement in shear performance of reinforced-concrete beams produced with recycled steel wires from waste tires. Sustainability, 14(20), 13360.
DOI: 10.3390/su142013360
Google Scholar
[27]
Khan, M., Cao, M., & Ali, M. (2018). Experimental and Empirical Study of Basalt Fibber Reinforced Concrete. Proceedings of the Building Tomorrow's Society, Fredericton, NB, Canada, 13-16.
Google Scholar
[28]
Wang, X., Wu, Q., & Chen, W. (2023). Experimental Study on the Impact Resistance of Steel Fiber Reinforced All-Lightweight Concrete Beams under Single and Hybrid Mixing Conditions. Buildings, 13(5), 1251
DOI: 10.3390/buildings13051251
Google Scholar
[29]
Afraz, A., & Ali, M. (2021). Effect of Banana Fiber on Flexural Properties of Fiber Reinforced Concrete for Sustainable Construction. Engineering Proceedings, 12(1), 63.
DOI: 10.3390/engproc2021012063
Google Scholar
[30]
Song, P. S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669-673.
DOI: 10.1016/j.conbuildmat.2004.04.027
Google Scholar
[31]
Hrynyk, T. D., & Vecchio, F. J. (2014). Behavior of steel fiber-reinforced concrete slabs under impact load. Structural Journal, 111(5), 1213-1224.
DOI: 10.14359/51686923
Google Scholar
[32]
Hussain, T., & Ali, M. Utilization of FRC Tension Zone for Reinforcement Reduction in Slabs-A Simplified Approach.
Google Scholar
[33]
Hayat, A., Khan, H., Haq, R. U., & Ali, M. Use of Pine-Needle Reinforced Composites in Kashmir, Pakistan–A Critical Review.
Google Scholar
[34]
Long, W., & Wang, Y. (2021). Effect of pine needle fibre reinforcement on the mechanical properties of concrete. Construction and Building Materials, 278, 122333.
DOI: 10.1016/j.conbuildmat.2021.122333
Google Scholar
[35]
Sinha, A. K., Narang, H. K., & Bhattacharya, S. (2017). Mechanical properties of natural fibre polymer composites. Journal of Polymer Engineering, 37(9), 879-895.
DOI: 10.1515/polyeng-2016-0362
Google Scholar
[36]
Dong, C., Parsons, D., & Davies, I. J. (2014). Tensile strength of pine needles and their feasibility as reinforcement in composite materials. Journal of Materials Science, 49, 8057-8062.
DOI: 10.1007/s10853-014-8513-8
Google Scholar