Rheological Optimization of Rubberized Self-Compacting Concrete Using Multi-Criteria Decision Making: A Hybrid CRITIC-Taguchi-TOPSIS Approach

Article Preview

Abstract:

The incorporation of rubber aggregates in SCC significantly affects fluidity, viscosity, and passing ability. In the research presented here, a hybrid multi-criteria decision-making method is adopted with a combination of the CRITIC method and Taguchi-TOPSIS optimization in order to evaluate the rheological properties of RSCC. The eighteen SCC mixes with varying percentages of rubber, ranging from 5% to 30%, are evaluated in terms of slump flow, V-funnel flow time, L-box passing ability, viscosity, and yield stress. The results show that when the proportion of a single type of rubber granule exceeds 20%, the rheological properties of the blend, such as flowability and passability, are significantly degraded. This contrasts with the combination of several types of rubber (20% fine rubber and 25% coarse rubber). This suggests that a homogeneous mixture can help reduce the adverse effects associated with high individual rubber contents,with enhanced sustainability and retention in self-compaction. The optimization analysis of 18 RSCC formulations indicated that RSCC5/G achieved the highest proximity score (C=1.0), while mixes having rubber content exceeding 20% had proximity scores less than 0.8, pointing to significant rheological decline.

You might also be interested in these eBooks

Info:

Pages:

13-32

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mehta PK, Monteiro PJM. Concrete: Microstructure, Properties, and Materials. McGraw-Hill Education; 2013.

Google Scholar

[2] Siddique R, Naik TR. Properties of concrete containing scrap-tire rubber – an overview. Waste Manag 2004;24:563–9.

DOI: 10.1016/j.wasman.2004.01.006

Google Scholar

[3] Thomas BS, Gupta RC. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew Sustain Energy Rev 2016;54:1323–33. https://doi.org/.

DOI: 10.1016/j.rser.2015.10.092

Google Scholar

[4] El Marzak M, Karim Serroukh H, Benaicha M, Zhu J, Hafidi Alaoui A, Burtschell Y. Rubber aggregates' effect on the rheological and mechanical behavior of self-compacting concrete. Mater Today Proc 2023.

DOI: 10.1016/j.matpr.2023.03.146

Google Scholar

[5] Carvalho IC, Melo ARS, Melo CDR, Brito MS, Chaves AR, Babadopulos LFAL, et al. Evaluation of the effect of rubber waste particles on the rheological and mechanical properties of cementitious materials for 3D printing. Constr Build Mater 2024;411:134377.

DOI: 10.1016/j.conbuildmat.2023.134377

Google Scholar

[6] EL Asri Y, Benaicha M, Zaher M, Hafidi Alaoui A. Prediction of plastic viscosity and yield stress of self-compacting concrete using machine learning technics. Mater Today Proc 2022;59:A7–13.

DOI: 10.1016/j.matpr.2022.04.891

Google Scholar

[7] EFNARC. Specification and Guidelines for Self-Compacting Concrete. Surrey, UK: 2002.

Google Scholar

[8] Hamdouni S, Benaicha M, Hafidi Alaoui A. Optimizing self-compacting concrete: formulation approach enhanced by entropy method. Discov Civ Eng 2024;1:63.

DOI: 10.1007/s44290-024-00067-x

Google Scholar

[9] Ganjian E, Khorami M, Maghsoudi AA. Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr Build Mater 2009;23:1828–36.

DOI: 10.1016/j.conbuildmat.2008.09.020

Google Scholar

[10] Shi C, Wu Z, Lv K, Wu L. A review on mixture design methods for self-compacting concrete. Constr Build Mater 2015;84:387–98. https://doi.org/10.1016/j.conbuildmat. 2015.03.079.

DOI: 10.1016/j.conbuildmat.2015.03.079

Google Scholar

[11] Aiello MA, Leuzzi F. Waste tyre rubberized concrete: Properties at fresh and hardened state. Waste Manag 2010; 30 :1696–704.

DOI: 10.1016/j.wasman.2010.02.005

Google Scholar

[12] Benaicha M, Roguiez X, Jalbaud O, Burtschell Y, Alaoui AH. Influence of silica fume and viscosity modifying agent on the mechanical and rheological behavior of self compacting concrete. Constr Build Mater 2015; 84: 103–10. https://doi.org/10.1016/ j.conbuildmat.2015.03.061.

DOI: 10.1016/j.conbuildmat.2015.03.061

Google Scholar

[13] Fattuhi NI, Clark LA. Cement-based materials containing shredded scrap truck tyre rubber. Constr Build Mater 1996;10:229–36.

DOI: 10.1016/0950-0618(96)00004-9

Google Scholar

[14] Khatib ZK, Bayomy FM. Rubberized Portland Cement Concrete. J Mater Civ Eng 1999;11:206–13.

DOI: 10.1061/(ASCE)0899-1561(1999)11:3(206)

Google Scholar

[15] Toutanji HA. The use of rubber tire particles in concrete to replace mineral aggregates. Cem Concr Compos 1996;18:135–9.

DOI: 10.1016/0958-9465(95)00010-0

Google Scholar

[16] Gupta T, Chaudhary S, Sharma RK. Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. J Clean Prod 2016;112:702–11.

DOI: 10.1016/j.jclepro.2015.07.081

Google Scholar

[17] Tingley DD, Davison B. Design for deconstruction and material reuse. Proc Inst Civ Eng - Energy 2011;164:195–204.

DOI: 10.1680/ener.2011.164.4.195

Google Scholar

[18] Pamučar D, Stević Ž, Sremac S. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry (Basel) 2018;10:393.

DOI: 10.3390/sym10090393

Google Scholar

[19] Şimşek B, İç YT, Şimşek EH. A TOPSIS-based Taguchi optimization to determine optimal mixture proportions of the high strength self-compacting concrete. Chemom Intell Lab Syst 2013;125:18–32.

DOI: 10.1016/j.chemolab.2013.03.012

Google Scholar

[20] Odu GO. Weighting methods for multi-criteria decision making technique. J Appl Sci Environ Manag 2019;23:1449.

DOI: 10.4314/jasem.v23i8.7

Google Scholar

[21] Diakoulaki D, Mavrotas G, Papayannakis L. Determining objective weights in multiple criteria problems: The critic method. Comput Oper Res 1995;22:763–70.

DOI: 10.1016/0305-0548(94)00059-H

Google Scholar

[22] AMILIA ALDIAN MAPT. No Title. J East Asia Soc Transp Stud 2005;6:3948–63. https://doi.org/.

Google Scholar

[23] Saaty TL. A scaling method for priorities in hierarchical structures. J Math Psychol 1977;15:234–81.

DOI: 10.1016/0022-2496(77)90033-5

Google Scholar

[24] Olson DL. Subjectivity in decision analysis. Rev d'intelligence Artif 2009;23:433–48.

DOI: 10.3166/ria.23.433-448

Google Scholar

[25] Ma J, Fan Z-P, Huang L-H. A subjective and objective integrated approach to determine attribute weights. Eur J Oper Res 1999;112:397–404.

DOI: 10.1016/S0377-2217(98)00141-6

Google Scholar

[26] Jahan A, Mustapha F, Sapuan SM, Ismail MY, Bahraminasab M. A framework for weighting of criteria in ranking stage of material selection process. Int J Adv Manuf Technol 2012;58:411–20.

DOI: 10.1007/s00170-011-3366-7

Google Scholar

[27] Hamdouni S, Benaicha M, Alaoui AH, Burtschell Y. Optimizing self-compacting concrete: A comprehensive analysis of weighting methods and multi-response optimization. Results Eng 2025;26:105138.

DOI: 10.1016/j.rineng.2025.105138

Google Scholar

[28] Yang T, Chou P. Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method. Math Comput Simul 2005;68:9–21.

DOI: 10.1016/j.matcom.2004.09.004

Google Scholar

[29] Su T, Chen H, Lu C. Systematic optimization for the evaluation of the microinjection molding parameters of light guide plate with TOPSIS‐based Taguchi method. Adv Polym Technol 2010;29:54–63.

DOI: 10.1002/adv.20181

Google Scholar

[30] Kuo Y, Yang T, Huang G-W. The use of a grey-based Taguchi method for optimizing multi-response simulation problems. Eng Optim 2008;40:517–28.

DOI: 10.1080/03052150701857645

Google Scholar

[31] El Marzak M, Karim Serroukh H, Benaicha M, Jalbaud O, Hafidi Alaoui A, Burtschell Y. Rheological and mechanical analysis of self-compacting concrete incorporating rubber aggregates. Case Stud Constr Mater 2025; 22: e04564. https://doi.org/10.1016/j.cscm. 2025.e04564.

DOI: 10.1016/j.cscm.2025.e04564

Google Scholar