[1]
Asadi H, Bodaghi M, Shakeri M, Aghdam MM. An analytical approach for nonlinear vibration and thermal stability of shape memory alloy hybrid laminated composite beams. European Journal of Mechanics - A/Solids. 2013 Nov 1;42:454–68
DOI: 10.1016/j.euromechsol.2013.07.011
Google Scholar
[2]
Civalek Ö, Akbaş ŞD, Akgöz B, Dastjerdi S. Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials. 2021 Mar;11(3):571
DOI: 10.3390/nano11030571
Google Scholar
[3]
Huang X hao, Yang J, Azim I, Wang X er, Ren X. Geometric Non-Linear Analysis of Auxetic Hybrid Laminated Beams Containing CNT Reinforced Composite Materials. Materials. 2020 Jan;13(17):3718
DOI: 10.3390/ma13173718
Google Scholar
[4]
Mororó LAT, Melo AMC de, Parente Junior E. Geometrically nonlinear analysis of thin-walled laminated composite beams. Lat Am j solids struct. 2015 Nov;12:2094–117
DOI: 10.1590/1679-78251782
Google Scholar
[5]
Chajdi M, Merrimi EB, Bikri KE. Geometrically Nonlinear Free Vibration of Composite Materials: Clamped-Clamped Functionally Graded Beam with an Edge Crack Using Homogenisation Method. Key Engineering Materials. 2017;730:521–6
DOI: 10.4028/www.scientific.net/KEM.730.521
Google Scholar
[6]
Fan J, Huang J. Haar Wavelet Method for Nonlinear Vibration of Functionally Graded CNT-Reinforced Composite Beams Resting on Nonlinear Elastic Foundations in Thermal Environment. Shock and Vibration. 2018;2018(1):9597541
DOI: 10.1155/2018/9597541
Google Scholar
[7]
Vu ANT, Nguyen DK. Nonlinear Dynamics of Two-Directional Functionally Graded Beam Under a Moving Load with Influence of Homogenization Scheme. J Vib Eng Technol. 2024 Dec 1;12(1):171–85
DOI: 10.1007/s42417-024-01409-w
Google Scholar
[8]
Kim K, Ri K, Yun C, Pak C, Han P. Nonlinear forced vibration analysis of composite beam considering internal damping. Nonlinear Dyn. 2022 Mar 1;107(4):3407–23
DOI: 10.1007/s11071-021-07148-x
Google Scholar
[9]
Zheng YF, Deng LQ. Nonlinear Free Vibration for Viscoelastic Moderately Thick Laminated Composite Plates with Damage Evolution. Mathematical Problems in Engineering. 2010;2010(1):562539
DOI: 10.1155/2010/562539
Google Scholar
[10]
Ghasemi AR, and Mohandes M. Nonlinear free vibration of laminated composite Euler-Bernoulli beams based on finite strain using generalized differential quadrature method. Mechanics of Advanced Materials and Structures. 2017 Aug 18;24(11):917–23
DOI: 10.1080/15376494.2016.1196794
Google Scholar
[11]
Ren YS, Sun SS, Zhang CJ. Nonlinear Natural Frequencies of Rotating Composite Thin-Walled Beam with Geometrical Nonlinear. Advanced Materials Research. 2013;683:779–82
DOI: 10.4028/www.scientific.net/AMR.683.779
Google Scholar
[12]
Zhang YW, Hou S, Zhang Z, Zang J, Ni ZY, Teng YY, et al. Nonlinear vibration absorption of laminated composite beams in complex environment. Nonlinear Dyn. 2020 Mar 1;99(4):2605–22
DOI: 10.1007/s11071-019-05442-3
Google Scholar
[13]
Chai YY, Li FM, Song ZG. Nonlinear Vibration Behaviors of Composite Laminated Plates with Time-Dependent Base Excitation and Boundary Conditions. International Journal of Nonlinear Sciences and Numerical Simulation. 2017 Apr 1;18(2):145–61
DOI: 10.1515/ijnsns-2016-0138
Google Scholar
[14]
Nematollahi MS, Mohammadi H, Dimitri R, Tornabene F. Nonlinear Vibration of Functionally Graded Graphene Nanoplatelets Polymer Nanocomposite Sandwich Beams. Applied Sciences. 2020 Jan;10(16):5669
DOI: 10.3390/app10165669
Google Scholar
[15]
Shen HS, Lin F, Xiang Y. Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn. 2017 Oct 1;90(2):899–914
DOI: 10.1007/s11071-017-3701-0
Google Scholar
[16]
Stoykov S, Margenov S. Nonlinear Vibrations of 3D Laminated Composite Beams. Mathematical Problems in Engineering. 2014;2014(1):892782
DOI: 10.1155/2014/892782
Google Scholar