Comparative Analysis of International Design Protocols for Lime-Based Soil Stabilization

Article Preview

Abstract:

Soil stabilization is a critical technique in the geotechnical engineering discipline, whose main purpose is to enhance the mechanical properties and long-term durability of subgrade materials used in infrastructure construction. Of the wide range of stabilization techniques, lime treatment is especially common because it can cause profound physicochemical changes in the soil matrix. Through the use of mechanisms like cation exchange, flocculation, and pozzolanic reactions, lime modifies the soil properties, thus increasing workability, reducing plasticity, and allowing the formation of cementitious compounds, namely calcium silicate hydrates (C-S-H) and calcium aluminate hydrates (C-A-H). The by-products of these chemical reactions result in enhanced compressive strength, reduced volumetric instability, and enhanced resistance to environmental factors. This study offers a systematic analysis of international design recommendations relevant to soil-lime stabilization, focusing in particular on the methods utilized in the United States, France, and the United Kingdom. The expressed recommendations reflect significant differences in soil classification systems, testing methods, optimization of lime addition, and performance assessment criteria, reflecting the unique engineering practices and environmental settings present in each nation. Through a critical analysis of these methodological differences, this study aims to enable the implementation of more consistent, performance-based stabilization methods that enhance the sustainability and effectiveness of soil treatment procedures within the field of geotechnical engineering.

You might also be interested in these eBooks

Info:

Pages:

121-135

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Harichane, M. Ghrici, H. Missoum, Influence of natural pozzolana and lime additives on the temporal variation of soil compaction and shear strength, Frontiers of Earth Science, 5(2)(2011)162-169.

DOI: 10.1007/s11707-011-0166-1

Google Scholar

[2] S.-M. Lim, Critical Review of Innovative Soil Road Stabilization Techniques, International Journal of Engineering and Advanced Technology, 3(2014)204-211.

Google Scholar

[3] O. Onal, Lime Stabilization of Soils Underlying a Salt Evaporation Pond: A Laboratory Study, Marine Georesources & Geotechnology, 33(2014)141217134114005.

DOI: 10.1080/1064119x.2014.909297

Google Scholar

[4] M. R. Hausmann, Engineering Principles of Ground Modification, McGraw-Hill, 1990.

Google Scholar

[5] S. Z. George, D. A. Ponniah, J. A. Little, Effect of temperature on lime-soil stabilization, Construction and Building Materials, 6(4)(1992)247-252.

DOI: 10.1016/0950-0618(92)90050-9

Google Scholar

[6] L. Saussaye, M. Boutouil, F. Baraud, L. Leleyter, Soils treatment with hydraulic binders: physico-chemical and geotechnical investigations of a chemical disturbance, International Symposium on Ground Improvement (IS-GI), 2(2012).

Google Scholar

[7] S. Faluyi, O. Amu, A. Adetoro, F. Ayodele, Geotechnical characteristics of road construction soils stabilized with lime in Southwestern Nigeria, NJE, 30(2)(2023)1.

DOI: 10.5455/nje.2023.30.02.01

Google Scholar

[8] V. R. Ouhadi, R. N. Yong, M. Amiri, M. H. Ouhadi, Pozzolanic consolidation of stabilized soft clays, Applied Clay Science, 95(2014)111-118.

DOI: 10.1016/j.clay.2014.03.020

Google Scholar

[9] S. O. Manzoor, A. Yousuf, Stabilisation of Soils with Lime: A Review, Journal of Materials and Environmental Science, 11(2020)1538-1551.

Google Scholar

[10] B. Qubain, K. Heirendt, J. Li, Quality Assurance and Quality Control Requirements for Lime and Cement Subgrade Stabilization, 2006, 238.

DOI: 10.1061/40866(198)29

Google Scholar

[11] A. B. Espinosa, V. López-Ausín, F. Fiol, R. Serrano-López, V. Ortega-López, Analysis of the deformational behavior of a clayey foundation soil stabilized with ladle furnace slag (LFS) using a finite element software, Materials Today: Proceedings, 4(2023)S2214785323017881.

DOI: 10.1016/j.matpr.2023.03.721

Google Scholar

[12] A. Khajeh, R. Jamshidi Chenari, M. Payan, H. MolaAbasi, Assessing the effect of lime-zeolite on geotechnical properties and microstructure of reconstituted clay used as a subgrade soil, Physics and Chemistry of the Earth, Parts A/B/C, 132(2023)103501.

DOI: 10.1016/j.pce.2023.103501

Google Scholar

[13] N. Cruz, et al., Biomass ash-based soil improvers: Impact of formulation and stabilization conditions on materials' properties, Journal of Cleaner Production, 391(2023)136049.

DOI: 10.1016/j.jclepro.2023.136049

Google Scholar

[14] S. Tamassoki, N. N. N. Daud, S. Wang, M. J. Roshan, CBR of stabilized and reinforced residual soils using experimental, numerical, and machine-learning approaches, Transportation Geotechnics, 42(2023)101080.

DOI: 10.1016/j.trgeo.2023.101080

Google Scholar

[15] V. Dharini, M. Balamaheswari, A. Nevis Presentia, Enhancing the strength of expansive clayey soil using lime as soil stabilizing agent along with sodium silicate as grouting chemical, Materials Today: Proceedings, 5(2023)S2214785323027797.

DOI: 10.1016/j.matpr.2023.05.156

Google Scholar

[16] O. E. Oluwatuyi, O.O. Ojuri, A. Khoshghalb, Cement-lime stabilization of crude oil contaminated kaolin clay, Journal of Rock Mechanics and Geotechnical Engineering, 12(1)(2020)160-167.

DOI: 10.1016/j.jrmge.2019.07.010

Google Scholar

[17] A. Dwivedi, S. Gupta, Influence of carbon sequestration in natural clay on engineering properties of cement-lime stabilized soil mortars, Developments in the Built Environment, 16(2023)100270.

DOI: 10.1016/j.dibe.2023.100270

Google Scholar

[18] S. Kim, J. Choi, S.-W. Jeong, Changes in the health of metal-contaminated soil before and after stabilization and solidification, Environmental Pollution, 331(2023)121929.

DOI: 10.1016/j.envpol.2023.121929

Google Scholar

[19] Z. Sun, W.-B. Chen, R.-D. Zhao, P. Shen, J.-H. Yin, Y. Chen, Effect of seawater on solidification/stabilization treatment of marine soft soil slurry by lime-activated ISSA and GGBS, Engineering Geology, 323(2023)107216.

DOI: 10.1016/j.enggeo.2023.107216

Google Scholar

[20] D. D. Higgins, J. M. Kinuthia, S. Wild, Soil Stabilization Using Lime-Activated Ground Granulated Blast Furnace Slag, Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Ottawa, 1998.

DOI: 10.14359/6023

Google Scholar

[21] A. S. Negi, M. Faizan, D. P. Siddharth, R. Singh, Soil stabilization using lime, International Journal of Innovative Research in Science, Engineering and Technology, 2(2013)448-453.

Google Scholar

[22] J. Eades, R. Grim, Reaction of hydrated lime with pure clay minerals in soil stabilization, Highway Research Board Bulletin, 1960.

Google Scholar

[23] I. T. Jawad, M. R. Taha, Z. H. Majeed, T. A. Khan, Soil Stabilization Using Lime: Advantages, Disadvantages and Proposing a Potential Alternative, RJASET, 8(4)(2014)510-520.

DOI: 10.19026/rjaset.8.1000

Google Scholar

[24] J. Mallela, H. Von Quintus, P.E., K. L. Smith, Consideration of lime-stabilized layers in mechanistic-empirical pavement design, The National Lime Association, 2004.

Google Scholar

[25] J. R. Prusinski, S. Bhattacharja, Effectiveness of Portland Cement and Lime in Stabilizing Clay Soils, Transportation Research Record, 1652(1)(1999)215-227.

DOI: 10.3141/1652-28

Google Scholar

[26] S. Diamond, J. L. White, W. L. Dolch, Transformation of Clay Minerals by Calcium Hydroxide Attack, Clays and Clay Minerals, 12(1)(1963)359-379.

DOI: 10.1346/ccmn.1963.0120134

Google Scholar

[27] G. Hilt, D. T. Davidson, Lime fixation in clayey soils, Highway Research Board Bulletin, 1960.

Google Scholar

[28] D. Boardman, S. Glendinning, C. Rogers, Development of stabilisation and solidification in lime–clay mixes, Geotechnique, 51(2001)533-543.

DOI: 10.1680/geot.51.6.533.40460

Google Scholar

[29] F. G. Bell, Lime stabilization of clay minerals and soils, Engineering Geology, 42(4)(1996)223-237.

DOI: 10.1016/0013-7952(96)00028-2

Google Scholar

[30] J. K. Mitchell, Fundamentals of Soil Behavior, Wiley, 1993.

Google Scholar

[31] N. Maubec, Approche multi-échelle du traitement des sols à la chaux-Etudes des interactions avec les argiles, PhD Thesis, Université de Nantes, 2010.

Google Scholar

[32] T. T. H. Nguyen, Stabilisation des sols traités à la chaux et leur comportement au gel, PhD Thesis, Université Paris-Est, 2015.

Google Scholar

[33] A. Le Roux, A. Rivière, Traitement des sols argileux par la chaux, Bulletin de Liaison des Laboratoires des Ponts et Chaussées, 40(1969)59-95.

DOI: 10.1016/s0152-9668(02)80033-x

Google Scholar

[34] J. Locat, H. Trembaly, S. Leroueil, Mechanical and hydraulic behaviour of a soft inorganic clay treated with lime, Canadian Geotechnical Journal, 33(4)(1996)654-669.

DOI: 10.1139/t96-090-311

Google Scholar

[35] B.L. Runigo, Durabilité d'un limon traité à la chaux et soumis à différentes sollicitations hydrauliques : comportements physico-chimique, microstructural, hydraulique et mécanique, Thesis, 2008.

Google Scholar

[36] D. N. Little, Stabilization of pavement subgrades and base courses with lime, 1995.

Google Scholar

[37] D18 Committee, Test Method for Using pH to Estimate the Soil-Lime Proportion Requirement for Soil Stabilization, ASTM Standard, D6276-99A.

DOI: 10.1520/d6276-19

Google Scholar

[38] C. D. F. Rogers, S. Glendinning, Modification of clay soils using lime, Lime Stabilisation: Proceedings of the Seminar held at Loughborough University, 1996, 99-114.

DOI: 10.1680/ls.25639.0010

Google Scholar

[39] M. R. Rao, A. S. Rao, R. D. Babu, Efficacy of lime-stabilised fly ash in expansive soils, Proceedings of the Institution of Civil Engineers - Ground Improvement, 161(1)(2008)23-29.

DOI: 10.1680/grim.2008.161.1.23

Google Scholar

[40] E. Pomakhina, D. Deneele, A.-C. Gaillot, M. Paris, G. Ouvrard, 29Si solid state NMR investigation of pozzolanic reaction occurring in lime-treated Ca-bentonite, Cement and Concrete Research, 42(4)(2012)626-632.

DOI: 10.1016/j.cemconres.2012.01.008

Google Scholar

[41] P. L. Rossi, P. Ildefonse, M. T. Nobrega, A. Chauvel, Etude des transformations structurales et minéralogiques provoquées par compactage avec ou sans addition de chaux à des argiles latéritiques brésiliennes, Bulletin of the International Association of Engineering Geology, 28(1)(1983)153-159.

DOI: 10.1007/bf02594809

Google Scholar

[42] S. Diamond, E. B. Kinter, Mechanisms of soil-lime stabilization, Highway Research Record, 92(1965)303-102.

Google Scholar

[43] The National Lime Association, Mixture Design and Testing Procedures for Lime Stabilized Soil, 2006.

Google Scholar

[44] National Cooperative Highway Research Program, Transportation Research Board, National Academies of Sciences, Engineering, and Medicine, Recommended Practice for Stabilization of Subgrade Soils and Base Materials, Transportation Research Board, 2009.

DOI: 10.17226/22999

Google Scholar

[45] ASTM C136, Test Method for Sieve Analysis of Fine and Coarse Aggregates.

Google Scholar

[46] ASTM D4318, Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.

Google Scholar

[47] ASTM D6276, Test Method for Using pH to Estimate the Soil-Lime Proportion Requirement for Soil Stabilization.

DOI: 10.1520/d6276

Google Scholar

[48] ASTM D698, Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort.

Google Scholar

[49] ASTM D5102, Test Methods for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures.

DOI: 10.1520/d5102

Google Scholar

[50] M. Thompson, Suggested Method for Mixture Design Procedure for Lime-Treated Soils, ASTM International, 1970, 430-430-11.

DOI: 10.1520/stp38539s

Google Scholar

[51] Comité Français pour les Techniques Routières, Treatment of Soils with Lime and/or Hydraulic Binders – Technical Guide, SETRA, 2007.

Google Scholar

[52] Comité Français pour les Techniques Routières, Traitement des sols à la chaux et /ou aux liants hydrauliques – Application à la réalisation des remblais et des couches de formes, LCPC-SETRA, 2000.

Google Scholar

[53] NF P94-100, Soils: Investigation and Testing - Lime and/or Hydraulic Binder Stabilization, 1999.

Google Scholar

[54] NF EN 13286-49, Unbound and Hydraulically Bound Mixtures - Accelerated Swelling Test for Soil Treated by Lime and/or Hydraulic Binder, 2004.

DOI: 10.3403/03006087u

Google Scholar

[55] NF EN 13286-42, Unbound and Hydraulically Bound Mixtures - Indirect Tensile Strength Test for Hydraulically Bound Mixtures, 2003.

DOI: 10.3403/02774050

Google Scholar

[56] NF P 98-114-3, Laboratory Study of Materials Treated with Hydraulic Binders - Part 3: Soils Treated with Hydraulic Binders Combined with Lime, 2009.

Google Scholar

[57] NF EN 197-1, Cement - Composition, Specifications and Conformity Criteria for Common Cements, 2020.

Google Scholar

[58] NF EN 13286-2, Unbound and Hydraulically Bound Mixtures - Proctor Compaction Method, 2010.

Google Scholar

[59] NF EN 13286-42, Mélanges traités et mélanges non traités aux liants hydrauliques - Partie 42: Méthode d'essai pour la détermination de la résistance à traction indirecte des mélanges traités aux liants hydrauliques, Unbound and Hydraulically Bound Mixtures - Part 42: Test Method for Determining the Indirect Tensile Strength of Hydraulically Bound Mixtures, 2003.

DOI: 10.3403/02774050

Google Scholar

[60] NF EN 13286-45, Mélanges traités aux liants hydrauliques et non traités - Partie 45: Méthode d'essai pour la détermination du délai de maniabilité des mélanges traités aux liants hydrauliques, Unbound and Hydraulically Bound Mixtures - Part 45: Test Method for Determining the Workability Period of Hydraulically Bound Mixtures, 2004.

DOI: 10.3403/02946485

Google Scholar

[61] NF P 94-093, Sols - Reconnaissance et essai de compactage Proctor – Détermination des références de compactage d'un matériau- Essai Proctor modifié - Essai Proctor normal, Soils - Investigation and Testing - Determination of the Compaction Characteristics of a Soil - Modified Proctor Test - Standard Proctor Test, 2014.

DOI: 10.1007/978-3-642-41714-6_132510

Google Scholar

[62] Britpave, Stabilised Soils as Subbase or Base for Roads and Other Pavements, 2004.

Google Scholar

[63] BS 1924-2, Stabilized Materials for Civil Engineering Purposes - Methods of Test for Cement-Stabilized and Lime-Stabilized Materials, 1990.

DOI: 10.3403/00224744

Google Scholar

[64] BS EN 16907-1, Earthworks - Principles and General Rules, 2018.

Google Scholar

[65] BSI Knowledge, BS 1924-1: Hydraulically Bound and Stabilized Materials for Civil Engineering Purposes - Sampling, Sample Preparation, and Testing of Materials Before Treatment, 2018.

DOI: 10.3403/30355890

Google Scholar

[66] BS EN 13286-49, Unbound and Hydraulically Bound Mixtures, 2004.

Google Scholar