[1]
K. Harichane, M. Ghrici, H. Missoum, Influence of natural pozzolana and lime additives on the temporal variation of soil compaction and shear strength, Frontiers of Earth Science, 5(2)(2011)162-169.
DOI: 10.1007/s11707-011-0166-1
Google Scholar
[2]
S.-M. Lim, Critical Review of Innovative Soil Road Stabilization Techniques, International Journal of Engineering and Advanced Technology, 3(2014)204-211.
Google Scholar
[3]
O. Onal, Lime Stabilization of Soils Underlying a Salt Evaporation Pond: A Laboratory Study, Marine Georesources & Geotechnology, 33(2014)141217134114005.
DOI: 10.1080/1064119x.2014.909297
Google Scholar
[4]
M. R. Hausmann, Engineering Principles of Ground Modification, McGraw-Hill, 1990.
Google Scholar
[5]
S. Z. George, D. A. Ponniah, J. A. Little, Effect of temperature on lime-soil stabilization, Construction and Building Materials, 6(4)(1992)247-252.
DOI: 10.1016/0950-0618(92)90050-9
Google Scholar
[6]
L. Saussaye, M. Boutouil, F. Baraud, L. Leleyter, Soils treatment with hydraulic binders: physico-chemical and geotechnical investigations of a chemical disturbance, International Symposium on Ground Improvement (IS-GI), 2(2012).
Google Scholar
[7]
S. Faluyi, O. Amu, A. Adetoro, F. Ayodele, Geotechnical characteristics of road construction soils stabilized with lime in Southwestern Nigeria, NJE, 30(2)(2023)1.
DOI: 10.5455/nje.2023.30.02.01
Google Scholar
[8]
V. R. Ouhadi, R. N. Yong, M. Amiri, M. H. Ouhadi, Pozzolanic consolidation of stabilized soft clays, Applied Clay Science, 95(2014)111-118.
DOI: 10.1016/j.clay.2014.03.020
Google Scholar
[9]
S. O. Manzoor, A. Yousuf, Stabilisation of Soils with Lime: A Review, Journal of Materials and Environmental Science, 11(2020)1538-1551.
Google Scholar
[10]
B. Qubain, K. Heirendt, J. Li, Quality Assurance and Quality Control Requirements for Lime and Cement Subgrade Stabilization, 2006, 238.
DOI: 10.1061/40866(198)29
Google Scholar
[11]
A. B. Espinosa, V. López-Ausín, F. Fiol, R. Serrano-López, V. Ortega-López, Analysis of the deformational behavior of a clayey foundation soil stabilized with ladle furnace slag (LFS) using a finite element software, Materials Today: Proceedings, 4(2023)S2214785323017881.
DOI: 10.1016/j.matpr.2023.03.721
Google Scholar
[12]
A. Khajeh, R. Jamshidi Chenari, M. Payan, H. MolaAbasi, Assessing the effect of lime-zeolite on geotechnical properties and microstructure of reconstituted clay used as a subgrade soil, Physics and Chemistry of the Earth, Parts A/B/C, 132(2023)103501.
DOI: 10.1016/j.pce.2023.103501
Google Scholar
[13]
N. Cruz, et al., Biomass ash-based soil improvers: Impact of formulation and stabilization conditions on materials' properties, Journal of Cleaner Production, 391(2023)136049.
DOI: 10.1016/j.jclepro.2023.136049
Google Scholar
[14]
S. Tamassoki, N. N. N. Daud, S. Wang, M. J. Roshan, CBR of stabilized and reinforced residual soils using experimental, numerical, and machine-learning approaches, Transportation Geotechnics, 42(2023)101080.
DOI: 10.1016/j.trgeo.2023.101080
Google Scholar
[15]
V. Dharini, M. Balamaheswari, A. Nevis Presentia, Enhancing the strength of expansive clayey soil using lime as soil stabilizing agent along with sodium silicate as grouting chemical, Materials Today: Proceedings, 5(2023)S2214785323027797.
DOI: 10.1016/j.matpr.2023.05.156
Google Scholar
[16]
O. E. Oluwatuyi, O.O. Ojuri, A. Khoshghalb, Cement-lime stabilization of crude oil contaminated kaolin clay, Journal of Rock Mechanics and Geotechnical Engineering, 12(1)(2020)160-167.
DOI: 10.1016/j.jrmge.2019.07.010
Google Scholar
[17]
A. Dwivedi, S. Gupta, Influence of carbon sequestration in natural clay on engineering properties of cement-lime stabilized soil mortars, Developments in the Built Environment, 16(2023)100270.
DOI: 10.1016/j.dibe.2023.100270
Google Scholar
[18]
S. Kim, J. Choi, S.-W. Jeong, Changes in the health of metal-contaminated soil before and after stabilization and solidification, Environmental Pollution, 331(2023)121929.
DOI: 10.1016/j.envpol.2023.121929
Google Scholar
[19]
Z. Sun, W.-B. Chen, R.-D. Zhao, P. Shen, J.-H. Yin, Y. Chen, Effect of seawater on solidification/stabilization treatment of marine soft soil slurry by lime-activated ISSA and GGBS, Engineering Geology, 323(2023)107216.
DOI: 10.1016/j.enggeo.2023.107216
Google Scholar
[20]
D. D. Higgins, J. M. Kinuthia, S. Wild, Soil Stabilization Using Lime-Activated Ground Granulated Blast Furnace Slag, Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Ottawa, 1998.
DOI: 10.14359/6023
Google Scholar
[21]
A. S. Negi, M. Faizan, D. P. Siddharth, R. Singh, Soil stabilization using lime, International Journal of Innovative Research in Science, Engineering and Technology, 2(2013)448-453.
Google Scholar
[22]
J. Eades, R. Grim, Reaction of hydrated lime with pure clay minerals in soil stabilization, Highway Research Board Bulletin, 1960.
Google Scholar
[23]
I. T. Jawad, M. R. Taha, Z. H. Majeed, T. A. Khan, Soil Stabilization Using Lime: Advantages, Disadvantages and Proposing a Potential Alternative, RJASET, 8(4)(2014)510-520.
DOI: 10.19026/rjaset.8.1000
Google Scholar
[24]
J. Mallela, H. Von Quintus, P.E., K. L. Smith, Consideration of lime-stabilized layers in mechanistic-empirical pavement design, The National Lime Association, 2004.
Google Scholar
[25]
J. R. Prusinski, S. Bhattacharja, Effectiveness of Portland Cement and Lime in Stabilizing Clay Soils, Transportation Research Record, 1652(1)(1999)215-227.
DOI: 10.3141/1652-28
Google Scholar
[26]
S. Diamond, J. L. White, W. L. Dolch, Transformation of Clay Minerals by Calcium Hydroxide Attack, Clays and Clay Minerals, 12(1)(1963)359-379.
DOI: 10.1346/ccmn.1963.0120134
Google Scholar
[27]
G. Hilt, D. T. Davidson, Lime fixation in clayey soils, Highway Research Board Bulletin, 1960.
Google Scholar
[28]
D. Boardman, S. Glendinning, C. Rogers, Development of stabilisation and solidification in lime–clay mixes, Geotechnique, 51(2001)533-543.
DOI: 10.1680/geot.51.6.533.40460
Google Scholar
[29]
F. G. Bell, Lime stabilization of clay minerals and soils, Engineering Geology, 42(4)(1996)223-237.
DOI: 10.1016/0013-7952(96)00028-2
Google Scholar
[30]
J. K. Mitchell, Fundamentals of Soil Behavior, Wiley, 1993.
Google Scholar
[31]
N. Maubec, Approche multi-échelle du traitement des sols à la chaux-Etudes des interactions avec les argiles, PhD Thesis, Université de Nantes, 2010.
Google Scholar
[32]
T. T. H. Nguyen, Stabilisation des sols traités à la chaux et leur comportement au gel, PhD Thesis, Université Paris-Est, 2015.
Google Scholar
[33]
A. Le Roux, A. Rivière, Traitement des sols argileux par la chaux, Bulletin de Liaison des Laboratoires des Ponts et Chaussées, 40(1969)59-95.
DOI: 10.1016/s0152-9668(02)80033-x
Google Scholar
[34]
J. Locat, H. Trembaly, S. Leroueil, Mechanical and hydraulic behaviour of a soft inorganic clay treated with lime, Canadian Geotechnical Journal, 33(4)(1996)654-669.
DOI: 10.1139/t96-090-311
Google Scholar
[35]
B.L. Runigo, Durabilité d'un limon traité à la chaux et soumis à différentes sollicitations hydrauliques : comportements physico-chimique, microstructural, hydraulique et mécanique, Thesis, 2008.
Google Scholar
[36]
D. N. Little, Stabilization of pavement subgrades and base courses with lime, 1995.
Google Scholar
[37]
D18 Committee, Test Method for Using pH to Estimate the Soil-Lime Proportion Requirement for Soil Stabilization, ASTM Standard, D6276-99A.
DOI: 10.1520/d6276-19
Google Scholar
[38]
C. D. F. Rogers, S. Glendinning, Modification of clay soils using lime, Lime Stabilisation: Proceedings of the Seminar held at Loughborough University, 1996, 99-114.
DOI: 10.1680/ls.25639.0010
Google Scholar
[39]
M. R. Rao, A. S. Rao, R. D. Babu, Efficacy of lime-stabilised fly ash in expansive soils, Proceedings of the Institution of Civil Engineers - Ground Improvement, 161(1)(2008)23-29.
DOI: 10.1680/grim.2008.161.1.23
Google Scholar
[40]
E. Pomakhina, D. Deneele, A.-C. Gaillot, M. Paris, G. Ouvrard, 29Si solid state NMR investigation of pozzolanic reaction occurring in lime-treated Ca-bentonite, Cement and Concrete Research, 42(4)(2012)626-632.
DOI: 10.1016/j.cemconres.2012.01.008
Google Scholar
[41]
P. L. Rossi, P. Ildefonse, M. T. Nobrega, A. Chauvel, Etude des transformations structurales et minéralogiques provoquées par compactage avec ou sans addition de chaux à des argiles latéritiques brésiliennes, Bulletin of the International Association of Engineering Geology, 28(1)(1983)153-159.
DOI: 10.1007/bf02594809
Google Scholar
[42]
S. Diamond, E. B. Kinter, Mechanisms of soil-lime stabilization, Highway Research Record, 92(1965)303-102.
Google Scholar
[43]
The National Lime Association, Mixture Design and Testing Procedures for Lime Stabilized Soil, 2006.
Google Scholar
[44]
National Cooperative Highway Research Program, Transportation Research Board, National Academies of Sciences, Engineering, and Medicine, Recommended Practice for Stabilization of Subgrade Soils and Base Materials, Transportation Research Board, 2009.
DOI: 10.17226/22999
Google Scholar
[45]
ASTM C136, Test Method for Sieve Analysis of Fine and Coarse Aggregates.
Google Scholar
[46]
ASTM D4318, Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
Google Scholar
[47]
ASTM D6276, Test Method for Using pH to Estimate the Soil-Lime Proportion Requirement for Soil Stabilization.
DOI: 10.1520/d6276
Google Scholar
[48]
ASTM D698, Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort.
Google Scholar
[49]
ASTM D5102, Test Methods for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures.
DOI: 10.1520/d5102
Google Scholar
[50]
M. Thompson, Suggested Method for Mixture Design Procedure for Lime-Treated Soils, ASTM International, 1970, 430-430-11.
DOI: 10.1520/stp38539s
Google Scholar
[51]
Comité Français pour les Techniques Routières, Treatment of Soils with Lime and/or Hydraulic Binders – Technical Guide, SETRA, 2007.
Google Scholar
[52]
Comité Français pour les Techniques Routières, Traitement des sols à la chaux et /ou aux liants hydrauliques – Application à la réalisation des remblais et des couches de formes, LCPC-SETRA, 2000.
Google Scholar
[53]
NF P94-100, Soils: Investigation and Testing - Lime and/or Hydraulic Binder Stabilization, 1999.
Google Scholar
[54]
NF EN 13286-49, Unbound and Hydraulically Bound Mixtures - Accelerated Swelling Test for Soil Treated by Lime and/or Hydraulic Binder, 2004.
DOI: 10.3403/03006087u
Google Scholar
[55]
NF EN 13286-42, Unbound and Hydraulically Bound Mixtures - Indirect Tensile Strength Test for Hydraulically Bound Mixtures, 2003.
DOI: 10.3403/02774050
Google Scholar
[56]
NF P 98-114-3, Laboratory Study of Materials Treated with Hydraulic Binders - Part 3: Soils Treated with Hydraulic Binders Combined with Lime, 2009.
Google Scholar
[57]
NF EN 197-1, Cement - Composition, Specifications and Conformity Criteria for Common Cements, 2020.
Google Scholar
[58]
NF EN 13286-2, Unbound and Hydraulically Bound Mixtures - Proctor Compaction Method, 2010.
Google Scholar
[59]
NF EN 13286-42, Mélanges traités et mélanges non traités aux liants hydrauliques - Partie 42: Méthode d'essai pour la détermination de la résistance à traction indirecte des mélanges traités aux liants hydrauliques, Unbound and Hydraulically Bound Mixtures - Part 42: Test Method for Determining the Indirect Tensile Strength of Hydraulically Bound Mixtures, 2003.
DOI: 10.3403/02774050
Google Scholar
[60]
NF EN 13286-45, Mélanges traités aux liants hydrauliques et non traités - Partie 45: Méthode d'essai pour la détermination du délai de maniabilité des mélanges traités aux liants hydrauliques, Unbound and Hydraulically Bound Mixtures - Part 45: Test Method for Determining the Workability Period of Hydraulically Bound Mixtures, 2004.
DOI: 10.3403/02946485
Google Scholar
[61]
NF P 94-093, Sols - Reconnaissance et essai de compactage Proctor – Détermination des références de compactage d'un matériau- Essai Proctor modifié - Essai Proctor normal, Soils - Investigation and Testing - Determination of the Compaction Characteristics of a Soil - Modified Proctor Test - Standard Proctor Test, 2014.
DOI: 10.1007/978-3-642-41714-6_132510
Google Scholar
[62]
Britpave, Stabilised Soils as Subbase or Base for Roads and Other Pavements, 2004.
Google Scholar
[63]
BS 1924-2, Stabilized Materials for Civil Engineering Purposes - Methods of Test for Cement-Stabilized and Lime-Stabilized Materials, 1990.
DOI: 10.3403/00224744
Google Scholar
[64]
BS EN 16907-1, Earthworks - Principles and General Rules, 2018.
Google Scholar
[65]
BSI Knowledge, BS 1924-1: Hydraulically Bound and Stabilized Materials for Civil Engineering Purposes - Sampling, Sample Preparation, and Testing of Materials Before Treatment, 2018.
DOI: 10.3403/30355890
Google Scholar
[66]
BS EN 13286-49, Unbound and Hydraulically Bound Mixtures, 2004.
Google Scholar