[1]
S. Foster, «The Inestimable Challenge », Struct. Concr., vol. 24, no 2, p.1718‑1719, 2023.
DOI: 10.1002/suco.202370002
Google Scholar
[2]
M. D. Jackson et al., « Cement Microstructures and Durability in Ancient Roman Seawater Concretes », in Historic Mortars, Springer, Dordrecht, 2012, p.49‑76.
DOI: 10.1007/978-94-007-4635-0_5
Google Scholar
[3]
S. Loomba, M. W. Khan, et N. Mahmood, « Seawater to Green Hydrogen: Future of Green Energy », ChemElectroChem, vol. 10, no 24, p. e202300471, 2023.
DOI: 10.1002/celc.202300471
Google Scholar
[4]
S.-Q. Liu, C. Wu, D.-M. Wang, J.-P. Guo, et L. He, « Effect of Seawater on Hydration and Sulfate Resistance of Noncement Mortars », J. Mater. Civ. Eng., vol. 34, no 8, p.04022178, août 2022.
DOI: 10.1061/(ASCE)MT.1943-5533.0004331
Google Scholar
[5]
J. MacFarlane, T. Vanorio, et P. J. M. Monteiro, « Multi-scale imaging, strength and permeability measurements: Understanding the durability of Roman marine concrete », Constr. Build. Mater., vol. 272, p.121812, févr. 2021.
DOI: 10.1016/j.conbuildmat.2020.121812
Google Scholar
[6]
S. Saxena et M. H. Baghban, « Seawater concrete: A critical review and future prospects », Dev. Built Environ., vol. 16, p.100257, déc. 2023.
DOI: 10.1016/j.dibe.2023.100257
Google Scholar
[7]
U. Ebead, D. Lau, F. Lollini, A. Nanni, P. Suraneni, et T. Yu, « A review of recent advances in the science and technology of seawater-mixed concrete », Cem. Concr. Res., vol. 152, p.106666, févr. 2022.
DOI: 10.1016/j.cemconres.2021.106666
Google Scholar
[8]
H.-H. Strehblow et P. Marcus, « Mechanisms of Pitting Corrosion », in Corrosion Mechanisms in Theory and Practice, 3e éd., CRC Press, 2011.
Google Scholar
[9]
F. M. Wegian, « Effect of seawater for mixing and curing on structural concrete », IES J. Part Civ. Struct. Eng., vol. 3, no 4, p.235‑243, nov. 2010.
DOI: 10.1080/19373260.2010.521048
Google Scholar
[10]
E. Bescher, E. K. Rice, C. Ramseyer, et S. Roswurm, « Sulfate resistance of calcium sulphoaluminate cement », J. Struct. Integr. Maint., vol. 1, no 3, p.131‑139, juill. 2016.
DOI: 10.1080/24705314.2016.1211235
Google Scholar
[11]
P. Sikora, K. Cendrowski, M. Abd Elrahman, S.-Y. Chung, E. Mijowska, et D. Stephan, « The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica », Appl. Nanosci., vol. 10, no 8, p.2627‑2638, août 2020.
DOI: 10.1007/s13204-019-00993-8
Google Scholar
[12]
Y. Zhao, X. Hu, Q. Yuan, Z. Wu, et C. Shi, « Effects of water to binder ratio on the chloride binding behaviour of artificial seawater cement paste blended with metakaolin and silica fume », Constr. Build. Mater., vol. 353, p.129110, oct. 2022.
DOI: 10.1016/j.conbuildmat.2022.129110
Google Scholar
[13]
F. Bolzoni, A. Brenna, et M. Ormellese, « Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete », Cem. Concr. Res., vol. 154, p.106719, avr. 2022.
DOI: 10.1016/j.cemconres.2022.106719
Google Scholar
[14]
L.B. de Oliveira, A.R.G. de Azevedo, M. T. Marvila, E.C. Pereira, R. Fediuk, et C. M. F. Vieira, «Durability of geopolymers with industrial waste», Case Stud. Constr. Mater., vol. 16, p. e00839, juin 2022.
DOI: 10.1016/j.cscm.2021.e00839
Google Scholar
[15]
S. Rathnarajan et P. Sikora, « Seawater-mixed concretes containing natural and sea sand aggregates – A review », Results Eng., vol. 20, p.101457, déc. 2023.
DOI: 10.1016/j.rineng.2023.101457
Google Scholar
[16]
P. Ghosh et A. Recinos, « Computation of corrosion initiation time with HPC mixtures and high-quality rebars », Mater. Today Proc., avr. 2023.
DOI: 10.1016/j.matpr.2023.04.066
Google Scholar
[17]
P. Sikora et al., « Seawater-Mixed Lightweight Aggregate Concretes with Dune Sand, Waste Glass and Nanosilica: Experimental and Life Cycle Analysis », Int. J. Concr. Struct. Mater., vol. 17, no 1, p.47, sept. 2023.
DOI: 10.1186/s40069-023-00613-4
Google Scholar
[18]
M. Hssaisoune, L. Bouchaou, A. Sifeddine, I. Bouimetarhan, et A. Chehbouni, « Moroccan Groundwater Resources and Evolution with Global Climate Changes », Geosciences, vol. 10, no 2, Art. no 2, févr. 2020.
DOI: 10.3390/geosciences10020081
Google Scholar
[19]
V. Arosio, A. Arrigoni, et G. Dotelli, « Reducing water footprint of building sector: concrete with seawater and marine aggregates », IOP Conf. Ser. Earth Environ. Sci., vol. 323, no 1, p.012127, août 2019.
DOI: 10.1088/1755-1315/323/1/012127
Google Scholar
[20]
M. Arabi et al., « Overview of Ecological Dynamics in Morocco – Biodiversity, Water Scarcity, Climate Change, Anthropogenic Pressures, and Energy Resources – Navigating Towards Ecosolutions and Sustainable Development», E3S Web Conf., vol. 527, p.01001, 2024.
DOI: 10.1051/e3sconf/202452701001
Google Scholar
[21]
C. A. Ochoa-Noriega, J. A. Aznar-Sánchez, J. F. Velasco-Muñoz, et A. Álvarez-Bejar, « The Use of Water in Agriculture in Mexico and Its Sustainable Management: A Bibliometric Review », Agronomy, vol. 10, no 12, Art. no 12, déc. 2020.
DOI: 10.3390/agronomy10121957
Google Scholar
[22]
A. Durán-Sánchez, J. Álvarez-García, et M. D. la C. Del Río-Rama, « Sustainable Water Resources Management: A Bibliometric Overview », Water, vol. 10, no 9, Art. no 9, sept. 2018.
DOI: 10.3390/w10091191
Google Scholar
[23]
D. Eamus, T. Hatton, P. Cook, et C. Colvin, Ecohydrology: Vegetation Function, Water and Resource Management. CSIRO Publishing, 2006.
DOI: 10.1071/9780643094093
Google Scholar
[24]
H. Tikam et A. Shukla, « A roadmap for implementing integrated asset management for sustainable water Infrastructure in India », in IABSE Congress New Delhi 2023, p.1603‑1611.
DOI: 10.2749/newdelhi.2023.1603
Google Scholar
[25]
S. Belarouf, A. Samaouali, K. Gueraoui, et H. Rahier, « Mechanical Properties of Concrete with Recycled Concrete Aggregates », Int. Rev. Civ. Eng. IRECE, vol. 11, no 6, p.268, nov. 2020.
DOI: 10.15866/irece.v11i6.18478
Google Scholar
[26]
W. Ashraf, I. B. Borno, R. I. Khan, S. Siddique, M. I. Haque, et A. Tahsin, « Mimicking the cementation mechanism of ancient Roman seawater concrete using calcined clays », Appl. Clay Sci., vol. 230, p.106696, nov. 2022.
DOI: 10.1016/j.clay.2022.106696
Google Scholar
[27]
J. Chen, J. Jia, et M. Zhu, « Development of admixtures on seawater sea sand concrete: A critical review on Concrete hardening, chloride ion penetration and steel corrosion », Constr. Build. Mater., vol. 411, p.134219, janv. 2024.
DOI: 10.1016/j.conbuildmat.2023.134219
Google Scholar
[28]
L. S. Ho, H. T. T. Ngo, H. T. Vu, S. T. Nguyen, V. N. Chau, et V. Q. Dang, « Durability of mortar and concrete containing pozzolans as a partial cement replacement in the marine environment: a review», J. Sci. Transp. Technol., p.13‑25, sept. 2023.
DOI: 10.58845/jstt.utt.2023.en.3.3.13-25
Google Scholar
[29]
W. D. Pratiwi, F. D. D. Putra, Triwulan, Y. Tajunnisa, N. A. Husin, et K. D. Wulandari, « A review of concrete durability in marine environment », IOP Conf. Ser. Mater. Sci. Eng., vol. 1175, no 1, p.012018, août 2021.
DOI: 10.1088/1757-899X/1175/1/012018
Google Scholar
[30]
N. Hosseinzadeh, A. Nanni, U. Ebead, et P. Suraneni, « Hydration, Strength, and Shrinkage of Cementitious Materials Mixed with Simulated Desalination Brine », Adv. Civ. Eng. Mater., vol. 8, no 2, p.31‑43, févr. 2019.
DOI: 10.1520/ACEM20190060
Google Scholar
[31]
A. Younis, U. Ebead, P. Suraneni, et A. Nanni, « Strength, shrinkage, and permeability performance of seawater concrete », présenté à ISEC 2019 - 10th International Structural Engineering and Construction: Interdependence between Structural Engineering and Construction Management, Chicago, Illinois, United States, May 20-25, 2019, ISEC Press, 2019. Consulté le: 11 mars 2025. [En ligne]. Disponible sur: https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-99733
DOI: 10.14455/isec.2019.6(1).mat-52
Google Scholar
[32]
M. Guo et al., « Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis », Constr. Build. Mater., vol. 234, p.117339, févr. 2020.
DOI: 10.1016/j.conbuildmat.2019.117339
Google Scholar
[33]
A. Alrowaih et A. Alruwayeh, « Sea Water Effects on the Mechanical Strength in Concrete on Exposure to Environmental Changes and During Curing », Int. J. Sci. Eng. Res., vol. 6, no 5, p.12‑20, mai 2018.
DOI: 10.70729/IJSER172510
Google Scholar