Exploring the Viability of Seawater in Concrete Mixing: A Sustainable Approach to Water Management in Morocco’s Construction Industry

Article Preview

Abstract:

Like many other nations, Morocco is grappling with escalating water stress, exacerbated by climate change, decreasing rainfall, and the increasing demand for water, particularly within the civil engineering sector. The growing reliance on concrete, driven by infrastructure development, has intensified pressure on already limited freshwater resources, presenting a significant challenge. In this context, the use of seawater in concrete mixing emerges as a promising alternative. While many studies explore ways to reduce freshwater consumption in civil engineering, few specifically address the use of seawater in concrete production. Seawater, which contains high levels of chloride and sulfate ions, can lead to the corrosion of steel reinforcements and potentially compromise the long-term durability of structures. Our research aims to explore this solution through a multi-phase approach. Initially, we will establish criteria for the acceptability of seawater as mixing water. Subsequently, we will conduct laboratory tests to assess the strength and durability of concrete made with seawater, comparing it with that produced using freshwater. Based on these findings, we will propose technical improvements to minimize the corrosive effects and enhance the viability of this approach. Ultimately, this study seeks to contribute to sustainable water management in the construction industry by alleviating pressure on freshwater resources, while supporting the growth and development of Morocco’s infrastructure.

You might also be interested in these eBooks

Info:

Pages:

47-62

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Foster, «The Inestimable Challenge », Struct. Concr., vol. 24, no 2, p.1718‑1719, 2023.

DOI: 10.1002/suco.202370002

Google Scholar

[2] M. D. Jackson et al., « Cement Microstructures and Durability in Ancient Roman Seawater Concretes », in Historic Mortars, Springer, Dordrecht, 2012, p.49‑76.

DOI: 10.1007/978-94-007-4635-0_5

Google Scholar

[3] S. Loomba, M. W. Khan, et N. Mahmood, « Seawater to Green Hydrogen: Future of Green Energy », ChemElectroChem, vol. 10, no 24, p. e202300471, 2023.

DOI: 10.1002/celc.202300471

Google Scholar

[4] S.-Q. Liu, C. Wu, D.-M. Wang, J.-P. Guo, et L. He, « Effect of Seawater on Hydration and Sulfate Resistance of Noncement Mortars », J. Mater. Civ. Eng., vol. 34, no 8, p.04022178, août 2022.

DOI: 10.1061/(ASCE)MT.1943-5533.0004331

Google Scholar

[5] J. MacFarlane, T. Vanorio, et P. J. M. Monteiro, « Multi-scale imaging, strength and permeability measurements: Understanding the durability of Roman marine concrete », Constr. Build. Mater., vol. 272, p.121812, févr. 2021.

DOI: 10.1016/j.conbuildmat.2020.121812

Google Scholar

[6] S. Saxena et M. H. Baghban, « Seawater concrete: A critical review and future prospects », Dev. Built Environ., vol. 16, p.100257, déc. 2023.

DOI: 10.1016/j.dibe.2023.100257

Google Scholar

[7] U. Ebead, D. Lau, F. Lollini, A. Nanni, P. Suraneni, et T. Yu, « A review of recent advances in the science and technology of seawater-mixed concrete », Cem. Concr. Res., vol. 152, p.106666, févr. 2022.

DOI: 10.1016/j.cemconres.2021.106666

Google Scholar

[8] H.-H. Strehblow et P. Marcus, « Mechanisms of Pitting Corrosion », in Corrosion Mechanisms in Theory and Practice, 3e éd., CRC Press, 2011.

Google Scholar

[9] F. M. Wegian, « Effect of seawater for mixing and curing on structural concrete », IES J. Part Civ. Struct. Eng., vol. 3, no 4, p.235‑243, nov. 2010.

DOI: 10.1080/19373260.2010.521048

Google Scholar

[10] E. Bescher, E. K. Rice, C. Ramseyer, et S. Roswurm, « Sulfate resistance of calcium sulphoaluminate cement », J. Struct. Integr. Maint., vol. 1, no 3, p.131‑139, juill. 2016.

DOI: 10.1080/24705314.2016.1211235

Google Scholar

[11] P. Sikora, K. Cendrowski, M. Abd Elrahman, S.-Y. Chung, E. Mijowska, et D. Stephan, « The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica », Appl. Nanosci., vol. 10, no 8, p.2627‑2638, août 2020.

DOI: 10.1007/s13204-019-00993-8

Google Scholar

[12] Y. Zhao, X. Hu, Q. Yuan, Z. Wu, et C. Shi, « Effects of water to binder ratio on the chloride binding behaviour of artificial seawater cement paste blended with metakaolin and silica fume », Constr. Build. Mater., vol. 353, p.129110, oct. 2022.

DOI: 10.1016/j.conbuildmat.2022.129110

Google Scholar

[13] F. Bolzoni, A. Brenna, et M. Ormellese, « Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete », Cem. Concr. Res., vol. 154, p.106719, avr. 2022.

DOI: 10.1016/j.cemconres.2022.106719

Google Scholar

[14] L.B. de Oliveira, A.R.G. de Azevedo, M. T. Marvila, E.C. Pereira, R. Fediuk, et C. M. F. Vieira, «Durability of geopolymers with industrial waste», Case Stud. Constr. Mater., vol. 16, p. e00839, juin 2022.

DOI: 10.1016/j.cscm.2021.e00839

Google Scholar

[15] S. Rathnarajan et P. Sikora, « Seawater-mixed concretes containing natural and sea sand aggregates – A review », Results Eng., vol. 20, p.101457, déc. 2023.

DOI: 10.1016/j.rineng.2023.101457

Google Scholar

[16] P. Ghosh et A. Recinos, « Computation of corrosion initiation time with HPC mixtures and high-quality rebars », Mater. Today Proc., avr. 2023.

DOI: 10.1016/j.matpr.2023.04.066

Google Scholar

[17] P. Sikora et al., « Seawater-Mixed Lightweight Aggregate Concretes with Dune Sand, Waste Glass and Nanosilica: Experimental and Life Cycle Analysis », Int. J. Concr. Struct. Mater., vol. 17, no 1, p.47, sept. 2023.

DOI: 10.1186/s40069-023-00613-4

Google Scholar

[18] M. Hssaisoune, L. Bouchaou, A. Sifeddine, I. Bouimetarhan, et A. Chehbouni, « Moroccan Groundwater Resources and Evolution with Global Climate Changes », Geosciences, vol. 10, no 2, Art. no 2, févr. 2020.

DOI: 10.3390/geosciences10020081

Google Scholar

[19] V. Arosio, A. Arrigoni, et G. Dotelli, « Reducing water footprint of building sector: concrete with seawater and marine aggregates », IOP Conf. Ser. Earth Environ. Sci., vol. 323, no 1, p.012127, août 2019.

DOI: 10.1088/1755-1315/323/1/012127

Google Scholar

[20] M. Arabi et al., « Overview of Ecological Dynamics in Morocco – Biodiversity, Water Scarcity, Climate Change, Anthropogenic Pressures, and Energy Resources – Navigating Towards Ecosolutions and Sustainable Development», E3S Web Conf., vol. 527, p.01001, 2024.

DOI: 10.1051/e3sconf/202452701001

Google Scholar

[21] C. A. Ochoa-Noriega, J. A. Aznar-Sánchez, J. F. Velasco-Muñoz, et A. Álvarez-Bejar, « The Use of Water in Agriculture in Mexico and Its Sustainable Management: A Bibliometric Review », Agronomy, vol. 10, no 12, Art. no 12, déc. 2020.

DOI: 10.3390/agronomy10121957

Google Scholar

[22] A. Durán-Sánchez, J. Álvarez-García, et M. D. la C. Del Río-Rama, « Sustainable Water Resources Management: A Bibliometric Overview », Water, vol. 10, no 9, Art. no 9, sept. 2018.

DOI: 10.3390/w10091191

Google Scholar

[23] D. Eamus, T. Hatton, P. Cook, et C. Colvin, Ecohydrology: Vegetation Function, Water and Resource Management. CSIRO Publishing, 2006.

DOI: 10.1071/9780643094093

Google Scholar

[24] H. Tikam et A. Shukla, « A roadmap for implementing integrated asset management for sustainable water Infrastructure in India », in IABSE Congress New Delhi 2023, p.1603‑1611.

DOI: 10.2749/newdelhi.2023.1603

Google Scholar

[25] S. Belarouf, A. Samaouali, K. Gueraoui, et H. Rahier, « Mechanical Properties of Concrete with Recycled Concrete Aggregates », Int. Rev. Civ. Eng. IRECE, vol. 11, no 6, p.268, nov. 2020.

DOI: 10.15866/irece.v11i6.18478

Google Scholar

[26] W. Ashraf, I. B. Borno, R. I. Khan, S. Siddique, M. I. Haque, et A. Tahsin, « Mimicking the cementation mechanism of ancient Roman seawater concrete using calcined clays », Appl. Clay Sci., vol. 230, p.106696, nov. 2022.

DOI: 10.1016/j.clay.2022.106696

Google Scholar

[27] J. Chen, J. Jia, et M. Zhu, « Development of admixtures on seawater sea sand concrete: A critical review on Concrete hardening, chloride ion penetration and steel corrosion », Constr. Build. Mater., vol. 411, p.134219, janv. 2024.

DOI: 10.1016/j.conbuildmat.2023.134219

Google Scholar

[28] L. S. Ho, H. T. T. Ngo, H. T. Vu, S. T. Nguyen, V. N. Chau, et V. Q. Dang, « Durability of mortar and concrete containing pozzolans as a partial cement replacement in the marine environment: a review», J. Sci. Transp. Technol., p.13‑25, sept. 2023.

DOI: 10.58845/jstt.utt.2023.en.3.3.13-25

Google Scholar

[29] W. D. Pratiwi, F. D. D. Putra, Triwulan, Y. Tajunnisa, N. A. Husin, et K. D. Wulandari, « A review of concrete durability in marine environment », IOP Conf. Ser. Mater. Sci. Eng., vol. 1175, no 1, p.012018, août 2021.

DOI: 10.1088/1757-899X/1175/1/012018

Google Scholar

[30] N. Hosseinzadeh, A. Nanni, U. Ebead, et P. Suraneni, « Hydration, Strength, and Shrinkage of Cementitious Materials Mixed with Simulated Desalination Brine », Adv. Civ. Eng. Mater., vol. 8, no 2, p.31‑43, févr. 2019.

DOI: 10.1520/ACEM20190060

Google Scholar

[31] A. Younis, U. Ebead, P. Suraneni, et A. Nanni, « Strength, shrinkage, and permeability performance of seawater concrete », présenté à ISEC 2019 - 10th International Structural Engineering and Construction: Interdependence between Structural Engineering and Construction Management, Chicago, Illinois, United States, May 20-25, 2019, ISEC Press, 2019. Consulté le: 11 mars 2025. [En ligne]. Disponible sur: https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-99733

DOI: 10.14455/isec.2019.6(1).mat-52

Google Scholar

[32] M. Guo et al., « Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis », Constr. Build. Mater., vol. 234, p.117339, févr. 2020.

DOI: 10.1016/j.conbuildmat.2019.117339

Google Scholar

[33] A. Alrowaih et A. Alruwayeh, « Sea Water Effects on the Mechanical Strength in Concrete on Exposure to Environmental Changes and During Curing », Int. J. Sci. Eng. Res., vol. 6, no 5, p.12‑20, mai 2018.

DOI: 10.70729/IJSER172510

Google Scholar