[1]
Matos AM, Varum H. Self-Compacting Earth-Based Composites: Mixture Design and Multi-Performance Characterisation. Buildings 2022;12:612.
DOI: 10.3390/buildings12050612
Google Scholar
[2]
Barbhuiya S, Kanavaris F, Das BB, Idrees M. Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. J Build Eng 2024;86:108861.
DOI: 10.1016/j.jobe.2024.108861
Google Scholar
[3]
Van Damme H, Houben H. Earth concrete. Stabilization revisited. Cem Concr Res 2018;114:90–102.
DOI: 10.1016/j.cemconres.2017.02.035
Google Scholar
[4]
Kohandelnia M, Hosseinpoor M, Yahia A, Belarbi R. New insight on rheology of self-consolidating earth concrete (SCEC). Powder Technol 2023;424:118561.
DOI: 10.1016/j.powtec.2023.118561
Google Scholar
[5]
Mojtaba KOHANDELNIA. Développement d'un béton de terre autoplaçant (SCEC) avec des performances multifonctionnelles améliorées pour une construction. UniversitédeLaRochelle; Universitéde Sherbrooke(Québec,Canada), 2023.
Google Scholar
[6]
Ouellet-Plamondon CM, Habert G. Self-Compacted Clay based Concrete (SCCC): proof-of-concept. J Clean Prod 2016;117:160–8.
DOI: 10.1016/j.jclepro.2015.12.048
Google Scholar
[7]
Vereecken H, Schnepf A, Hopmans JW, Javaux M, Or D, Roose T, et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zo J 2016;15:1–57.
DOI: 10.2136/vzj2015.09.0131
Google Scholar
[8]
Kohandelnia M, Hosseinpoor M, Yahia A, Belarbi R. Multiscale investigation of self-consolidating earthen materials using a novel concrete-equivalent mortar approach. Constr Build Mater 2023;370:130700.
DOI: 10.1016/j.conbuildmat.2023.130700
Google Scholar
[9]
Hosseinpoor M, Ouro Koura B-I, Yahia A. Rheo-morphological investigation of static and dynamic stability of self-consolidating concrete: A biphasic approach. Cem Concr Compos 2021;121:104072.
DOI: 10.1016/j.cemconcomp.2021.104072
Google Scholar
[10]
Gomaa M, Schade S, Bao DW, Xie YM. Automation in rammed earth construction for industry 4.0: Precedent work, current progress and future prospect. J Clean Prod 2023;398:136569.
DOI: 10.1016/j.jclepro.2023.136569
Google Scholar
[11]
Kariyawasam KKGKD, Jayasinghe C. Cement stabilized rammed earth as a sustainable construction material. Constr Build Mater 2016;105:519–27.
DOI: 10.1016/j.conbuildmat.2015.12.189
Google Scholar
[12]
Kohandelnia M, Hosseinpoor M, Yahia A, Belarbi R. A new approach for proportioning self-consolidating earth paste (SCEP) using the Taguchi method. Constr Build Mater 2022;347:128579.
DOI: 10.1016/j.conbuildmat.2022.128579
Google Scholar
[13]
Mousavi SS, Bhojaraju C, Ouellet-Plamondon C. Clay as a Sustainable Binder for Concrete-A Review. Constr Mater 2021;1:134–68.
DOI: 10.3390/constrmater1030010
Google Scholar
[14]
Aziz A, Mehboob SS, Tayyab A, Khan D, Hayyat K, Ali A, et al. Enhancing sustainability in self-compacting concrete by optimizing blended supplementary cementitious materials. Sci Rep 2024;14:12326.
DOI: 10.1038/s41598-024-62499-w
Google Scholar
[15]
Shah SAR, Ahmad H, Alhazmi H, Anwar MK, Iqbal F. Utilization of Self-Consolidated Green Material for Sustainable Development: An Environment Friendly Waste Materials Application for Circular Economy. Polymers (Basel) 2021;13:2985.
DOI: 10.3390/polym13172985
Google Scholar
[16]
Lam A, Hamzaoui R, Kindinis A, Idir R, Lamberet S, Patrix S. Thermal, Hygrothermal, Mechanical and Environmental Study of Stabilized Earth with GGBS-Based Binders. Buildings 2025;15:594.
DOI: 10.3390/buildings15040594
Google Scholar
[17]
Kohandelnia M, Hosseinpoor M, Yahia A, Belarbi R. Hygrothermal and microstructural characterization of self-consolidating earth concrete (SCEC). J Build Eng 2023;69:106287.
DOI: 10.1016/j.jobe.2023.106287
Google Scholar
[18]
Hossain KMA, Mol L. Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes. Constr Build Mater 2011;25:3495–501.
DOI: 10.1016/j.conbuildmat.2011.03.042
Google Scholar
[19]
Ardant D, Brumaud C, Zosso N, Bernard E, Habert G. Impact of silt chemical composition on deflocculation and coagulation of clay-rich paste. Colloids Surfaces A Physicochem Eng Asp 2024;694:134147.
DOI: 10.1016/j.colsurfa.2024.134147
Google Scholar
[20]
Wang J, Song S, Zhang Y, Xing T, Ma Y, Qian H. Hydration and Mechanical Properties of Calcium Sulphoaluminate Cement Containing Calcium Carbonate and Gypsum under NaCl Solutions. Materials (Basel) 2022;15:816.
DOI: 10.3390/ma15030816
Google Scholar
[21]
Huang Y, Sun H, Liu W, Zhao H, Dong D, Zhao P, et al. Improved early-age and late-age performances of calcium sulphoaluminate cement with the presence of calcium nitrate. Constr Build Mater 2022;327:126927.
DOI: 10.1016/j.conbuildmat.2022.126927
Google Scholar
[22]
EL Asri Y, Benaicha M, Zaher M, Hafidi Alaoui A. Prediction of plastic viscosity and yield stress of self-compacting concrete using machine learning technics. Mater Today Proc 2022;59:A7–13.
DOI: 10.1016/j.matpr.2022.04.891
Google Scholar
[23]
Asri Y, Benaicha M, Zaher M, Hafidi Alaoui A. Prediction of the compressive strength of self‐compacting concrete using artificial neural networks based on rheological parameters. Struct Concr 2022.
DOI: 10.1002/suco.202100796
Google Scholar
[24]
El Marzak M, Ben Aicha M, Lamrani B, Alaoui AH. Analysis of the heat transfer time in rubber aggregate concrete as a function of humidity percentage at very high temperature. Mater Today Proc 2022.
DOI: 10.1016/j.matpr.2022.02.354
Google Scholar
[25]
EL MARZAK M, KARIM SERROUKH H, BENAICHA M, HAFIDI ALAOUI A, BURTSCHELL Y. Analysis of the thermal behavior of rubber concrete at elevated temperatures based on the humidity levels: Numerical and mathematical modeling. Adv Eng Softw 2022;172:103182.
DOI: 10.1016/j.advengsoft.2022.103182
Google Scholar
[26]
Hall M, Allinson D. Assessing the effects of soil grading on the moisture content-dependent thermal conductivity of stabilised rammed earth materials. Appl Therm Eng 2009;29:740–7.
DOI: 10.1016/j.applthermaleng.2008.03.051
Google Scholar
[27]
Schroeder H. Modern earth building codes, standards and normative development. Mod. Earth Build., Elsevier; 2012, p.72–109.
DOI: 10.1533/9780857096166.1.72
Google Scholar
[28]
Morel J-C, Pkla A, Walker P. Compressive strength testing of compressed earth blocks. Constr Build Mater 2007;21:303–9.
DOI: 10.1016/j.conbuildmat.2005.08.021
Google Scholar
[29]
Flatt RJ, Roussel N, Cheeseman CR. Concrete: An eco material that needs to be improved. J Eur Ceram Soc 2012;32:2787–98.
DOI: 10.1016/j.jeurceramsoc.2011.11.012
Google Scholar
[30]
Jayasinghe C, Kamaladasa N. Compressive strength characteristics of cement stabilized rammed earth walls. Constr Build Mater 2007;21:1971–6.
DOI: 10.1016/j.conbuildmat.2006.05.049
Google Scholar
[31]
Zami MS, Lee A. Inhibitors of adopting stabilised earth construction to address urban low cost housing crisis: An understanding by construction professionals. J Build Apprais 2011;6:227–40.
DOI: 10.1057/jba.2010.25
Google Scholar