An Efficient Modal Reanalysis Method for Structural Dynamic Modification Using Residual Flexibility Without Additional Degrees of Freedom

Article Preview

Abstract:

Modal truncation errors in structural dynamic analysis arise when only a limited number of modes are retained in the modal basis, leading to significant inaccuracies in eigenfrequency predictions and mode shape estimations. This study presents a novel modal reanalysis technique that incorporates residual flexibility terms to account for the contribution of neglected higher-order modes, thereby reducing truncation errors without increasing the system's degrees of freedom in structural dynamic modification problems. The study presents an efficient modal reanalysis technique that is less expensive and more accurate, which can be used to evaluate the natural frequencies and mode shapes of a modified structure. The uniqueness of this technique lies in the structure of the formula, which emphasizes the contribution of unknown modes. This contribution can either be calculated for a finite element model or identified through an experimental model test. Numerical tests are provided to demonstrate the effectiveness of this method. High-quality results can still be obtained even if the modifications made to the structure are significant.

You might also be interested in these eBooks

Info:

Pages:

105-118

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Torzoni, M. Tezzele, S. Mariani, A. Manzoni, and K. E. Willcox, 'A digital twin framework for civil engineering structures', Computer Methods in Applied Mechanics and Engineering, vol. 418, 2024.

DOI: 10.1016/j.cma.2023.116584

Google Scholar

[2] N. Jones, 'Recent studies on the dynamic plastic behavior of structures', Applied Mechanics Reviews, vol. 42, no. 4, p.95–115, 1989.

DOI: 10.1115/1.3152425

Google Scholar

[3] G. Kerschen, K. Worden, A. F. Vakakis, and J.-C. Golinval, 'Past, present and future of nonlinear system identification in structural dynamics', Mechanical Systems and Signal Processing, vol. 20, no. 3, p.505–592, 2006.

DOI: 10.1016/j.ymssp.2005.04.008

Google Scholar

[4] K. F. Alvin, 'Finite element model update via bayesian estimation and minimization of dynamic residuals', AIAA Journal, vol. 35, no. 5, p.879–886, 1997.

DOI: 10.2514/2.7462

Google Scholar

[5] S. W. Doebling, C. R. Farrar, and M. B. Prime, 'A summary review of vibration-based damage identification methods', Shock and Vibration Digest, vol. 30, no. 2, p.91–105, 1998.

DOI: 10.1177/058310249803000201

Google Scholar

[6] J. He and J. Jiang, 'New method of dynamical reanalysis for large modification of structural topology based on reduced model', Advanced Materials Research, vol. 443–444, p.628–631, 2012.

DOI: 10.4028/www.scientific.net/AMR.443-444.628

Google Scholar

[7] U. Kirsch, M. Bogomolni, and I. Sheinman, 'Nonlinear dynamic reanalysis of structures by combined approximations', Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 33–36, p.4420–4432, 2006.

DOI: 10.1016/j.cma.2005.09.013

Google Scholar

[8] K. Elliott and L. Mitchell, 'The effect of modal truncation on modal modification', 1987, [Online]. Available: https://consensus.app/papers/the-effect-of-modal-truncation-on-modal-modification-elliott-mitchell/033686b6bf99540ab6f2243a10524a67/

Google Scholar

[9] S. G. Braun and Y. M. Ram, 'Predicting the effect of structural modification. Upper and lower bounds due to modal truncation', The International journal of analytical and experimental modal analysis, vol. 6, no. 3, p.201–213, 1991.

Google Scholar

[10] O. Dadah, H. A. Rimouch, A. Mousrij, O. Koubaiti, and N. Mastorakis, 'A new approach to solve perturbed symmetric eigenvalue problems', International Journal of Circuits, Systems and Signal Processing, vol. 14, p.629–636, 2020.

DOI: 10.46300/9106.2020.14.80

Google Scholar

[11] H. Aitrimouch, 'Analyse de structures mécaniques modifiées', PhD Thesis, 1993. [Online]. Available: http://www.theses.fr/1993BESA2050

Google Scholar

[12] L. Jezequel, 'Procedure to reduce the effects of modal truncation in eigensolutionreanalysis', AIAA Journal, vol. 28, no. 5, p.896–902, 1990.

DOI: 10.2514/3.25136

Google Scholar

[13] B. P. Wang, S. P. Caldwell, and C. M. Smith, 'Improved eigensolution reanalysis procedures in structural dynamics', Finite Elements in Analysis and Design, vol. 11, no. 3, p.191–200, 1992.

DOI: 10.1016/0168-874X(92)90050-M

Google Scholar

[14] V. Matray, F. Amlani, F. Feyel, and D. Néron, 'A hybrid numerical methodology coupling reduced order modeling and Graph Neural Networks for non-parametric geometries: Applications to structural dynamics problems', Computer Methods in Applied Mechanics and Engineering, vol. 430, 2024.

DOI: 10.1016/j.cma.2024.117243

Google Scholar

[15] R. Sohaney and D. Bonnecasse, 'Residual mobolities and structural dynamic modifications', presented at the IMAC, 1989, p.568–574.

Google Scholar

[16] S. R. Idelsohn and A. Cardona, 'A reduction method for nonlinear structural dynamic analysis', Computer Methods in Applied Mechanics and Engineering, vol. 49, no. 3, p.253–279, Jun. 1985.

DOI: 10.1016/0045-7825(85)90125-2

Google Scholar

[17] Z. Jia and G. W. Stewart, 'An analysis of the Rayleigh-Ritz method for approximating eigenspaces', Mathematics of Computation, vol. 70, no. 234, p.637–647, 2001.

DOI: 10.1090/S0025-5718-00-01208-4

Google Scholar

[18] L. Champaney, 'Notes de cours de Dynamique des Structures'.

Google Scholar

[19] J. O. Osuntoki, 'Advanced Solutions to Boundary Value Problems: A Comparative Study of Rayleigh-Ritz and the Finite Element Method', vol. 1, no. 1, 2024.

DOI: 10.20944/preprints202410.0461.v2

Google Scholar

[20] R. S. Langley, 'On the vibrational conductivity approach to high frequency dynamics for two-dimensional structural components', Journal of Sound and Vibration, vol. 182, no. 4, p.637–657, May 1995.

DOI: 10.1006/jsvi.1995.0223

Google Scholar

[21] E. Balmès, 'Optimal ritz vectors for component mode synthesis using the singular value decomposition', AIAA Journal, vol. 34, no. 6, p.1256–1260, 1996.

DOI: 10.2514/3.13221

Google Scholar

[22] I. Gohberg, L. Rodman, and P. Lancaster, 'Factorization of Selfadjoint Matrix Polynomials with Constant Signature', Linear and Multilinear Algebra, vol. 11, no. 3, p.209–224, 1982.

DOI: 10.1080/03081088208817445

Google Scholar

[23] P. Lancaster, 'A review of numerical methods for eigenvalue problems nonlinear in the parameter', Numerik und Anwendungen von Eigenwertaufgaben und Verzweigungsproblemen: Vortragsauszüge der Tagung über Numerik und Anwendungen von Eigenwertaufgaben und Verzweigungsproblemen vom 14. bis 20. November 1976 im Mathematischen Forschungsinstitut Oberwolfach (Schwarzwald), p.43–67, 1977.

DOI: 10.1007/978-3-0348-5579-2_2

Google Scholar

[24] G. Peters and J. H. Wilkinson, '\Ax = łambda Bx\ and the Generalized Eigenproblem', SIAM Journal on Numerical Analysis, vol. 7, no. 4, p.479–492, 1970.

DOI: 10.1137/0707039

Google Scholar

[25] A. Ruhe, 'Algorithms for the Nonlinear Eigenvalue Problem', SIAM Journal on Numerical Analysis, vol. 10, no. 4, p.674–689, 1973.

DOI: 10.1137/0710059

Google Scholar

[26] T. Krake, M. von Scheven, J. Gade, M. Abdelaal, D. Weiskopf, and M. Bischoff, 'Efficient Update of Redundancy Matrices for Truss and Frame Structures', ArXiv, vol. abs/2205.12264, 2022, [Online]. Available: https://api.semanticscholar.org/CorpusID:249062642

DOI: 10.46298/jtcam.9615

Google Scholar

[27] T. Catterou, 'Étude numérique et expérimentale du comportement dynamique non linéaire d'un réseau de tubes avec jeux - application aux faisceaux d'aiguilles combustibles RNR.', 2018.

Google Scholar

[28] W. Ritz, 'Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik.', Journal für die reine und angewandte Mathematik, vol. 1909, no. 135, p.1–61, 1909, doi:.

DOI: 10.1515/crll.1909.135.1

Google Scholar

[29] J.-M. Mencik and N. Bouhaddi, 'Dynamic reanalysis of structures with geometric variability and parametric uncertainties via an adaptive model reduction method', Mechanical Systems and Signal Processing, vol. 190, p.110127, May 2023.

DOI: 10.1016/j.ymssp.2023.110127

Google Scholar

[30] L. Meirovitch, 'Principles and techniques of vibrations', (No Title), 1997.

Google Scholar

[31] K.-J. Bathe, Finite element procedures. Klaus-Jurgen Bathe, 2006.

Google Scholar

[32] S. P. Zheng, B. S. Wu, and Z. G. Li, 'Free vibration reanalysis of structures with added degrees of freedom', Computers & Structures, vol. 206, p.31–41, Aug. 2018.

DOI: 10.1016/j.compstruc.2018.06.006

Google Scholar

[33] 'Vibration reanalysis based on block combined approximations with shifting - ScienceDirect'. Accessed: Jan. 16, 2025. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0045794914002843?via%3Dihub

Google Scholar

[34] H. Jian-Jun, C. Xiang-Zi, and X. Bin, 'Structural modal reanalysis for large, simultaneous and multiple type modifications', Mechanical Systems and Signal Processing, vol. 62, p.207–217, 2015.

DOI: 10.1016/j.ymssp.2015.03.019

Google Scholar

[35] J. Mm, J. Sabot, and R. J. Gibert, 'Methode De Correction Des Caracteristiques Residuelles De Frontiere En Synthese Modale', 1988.

Google Scholar

[36] H. Tournaire, F. Renaud, and J.-L. Dion, 'A reduction methodology using free-free component eigenmodes and arnoldi enrichment', presented at the Proceedings of the ASME Design Engineering Technical Conference, 2015.

DOI: 10.1115/DETC2015-46777

Google Scholar