Accurate Results by the Ritz Method for Free Vibration of Uniform Annular Plates

Article Preview

Abstract:

This paper describes an approach extended from Ritz method to analyze the free vibration of thin isotropic annular plates in good accuracy, and presents comprehensive lists of natural frequencies of the plate for all possible sets of classical boundary conditions. Analytical process is developed to introduce the boundary index that allows to accommodate any sets of free, simple supported and clamped edges along inner and outer boundary of the plate. Convergence and comparison studies are made to demonstrate numerical accuracy in the frequency parameters. Results are summarized for nine sets of boundary conditions and six different ratios of (inner radius)/(outer radius), and are intended to serve for uses of design data and comparison in relevant future papers.

You might also be interested in these eBooks

Info:

Pages:

11-20

Citation:

Online since:

June 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.W. Leissa, Vibration of Plates, 1993 Vibration of Plates, Acoustical Society of America; previously, 1969 NASA SP-160, U.S. Government Printing Office, Washington D.C, NASA SP-160, 1969.

DOI: 10.1177/058310247200401107

Google Scholar

[2] R.D. Blevins, Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold, 1979.

Google Scholar

[3] K. Itao, S.H. Crandall, Natural modes and natural frequencies of uniform, circular, free edge plates. J. Applied Mech., 46 (1979), 448-453.

DOI: 10.1115/1.3424569

Google Scholar

[4] A.W. Leissa, Y. Narita, Natural frequencies of simply supported circular plates, J. Sound Vibr. 70 (1980) 221-229.

DOI: 10.1016/0022-460x(80)90598-2

Google Scholar

[5] S.M. Vogel, D.W. Skinner, Natural frequencies of transversely vibrating uniform annular plates. J. Applied Mech., 32 (1965), 926-931.

DOI: 10.1115/1.3627337

Google Scholar

[6] K. Vijayakumar, G.K. Ramaiah, On the use of a coordinate transformation for analysis of axisymmetric vibration of polar orthotropic annular plates, J. Sound Vibr. 24 (1972), 165-175.

DOI: 10.1016/0022-460x(72)90946-7

Google Scholar

[7] G.K. Ramaiah, K. Vijayakumar, Natural frequencies of polar orthotropic annular plates, J. Sound Vibr. 26 (1973), 517-531.

DOI: 10.1016/s0022-460x(73)80217-2

Google Scholar

[8] G.K. Ramaiah, K. Vijayakumar, Estimation of higher natural frequencies of polar orthotropic annular plates, J. Sound Vibr. 32 (1974), 265-278.

DOI: 10.1016/s0022-460x(74)80169-0

Google Scholar

[9] D.G. Gorman, Natural frequencies of polar orthotropic uniform annular plates, 80 (1982), 145154.

DOI: 10.1016/0022-460x(82)90397-2

Google Scholar

[10] Y. Narita, Natural frequencies of completely free annular and circular plates having polar orthotropy. J. Sound Vibr., 92 (1984), 33-38.

DOI: 10.1016/0022-460x(84)90371-7

Google Scholar

[11] Y. Narita, Free vibration of continuous polar orthotropic annular and circular plates. J. Sound Vibr., 93 (1984), 503-511.

DOI: 10.1016/0022-460x(84)90419-x

Google Scholar

[12] Z.H. Zhou, K.W. Wong, X.S. Xu, A.Y.T. Leung, Natural vibration of circular and annular thin plates by Hamiltonian approach, J. Sound Vibr., 330 (2011), 1005-1017.

DOI: 10.1016/j.jsv.2010.09.015

Google Scholar

[13] K. Mercan, H. Ersoy, O. Civalek, Free vibration of annular plates by discrete singular convolution and differential quadrature methods, J. Applied Compt. Mech. 2 (2016), 128-133.

DOI: 10.1016/j.compstruct.2016.11.051

Google Scholar

[14] Y. Janiman, B. Singh, Free vibration of circular annular plate with different boundary conditions, Vibroengineering PROCEDIA, 29 (2019), 82-86.

DOI: 10.21595/vp.2019.21116

Google Scholar

[15] Y.Narita, P. Robinson, Maximizing the fundamental frequency of laminated cylindrical panels using layerwise optimization, Int. J. Mech. Sci., 48 (2006), 1516-1524.

DOI: 10.1016/j.ijmecsci.2006.06.008

Google Scholar

[16] D. Narita, Y. Narita, Accurate results for free vibration of doubly curved shallow shells of rectangular planform (Part 1), EPI Int. J. Eng., 4 (2021), 29-36.

DOI: 10.25042/epi-ije.022021.05

Google Scholar