[1]
A.W. Leissa, Vibration of Plates, 1993 Vibration of Plates, Acoustical Society of America; previously, 1969 NASA SP-160, U.S. Government Printing Office, Washington D.C, NASA SP-160, 1969.
DOI: 10.1177/058310247200401107
Google Scholar
[2]
R.D. Blevins, Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold, 1979.
Google Scholar
[3]
K. Itao, S.H. Crandall, Natural modes and natural frequencies of uniform, circular, free edge plates. J. Applied Mech., 46 (1979), 448-453.
DOI: 10.1115/1.3424569
Google Scholar
[4]
A.W. Leissa, Y. Narita, Natural frequencies of simply supported circular plates, J. Sound Vibr. 70 (1980) 221-229.
DOI: 10.1016/0022-460x(80)90598-2
Google Scholar
[5]
S.M. Vogel, D.W. Skinner, Natural frequencies of transversely vibrating uniform annular plates. J. Applied Mech., 32 (1965), 926-931.
DOI: 10.1115/1.3627337
Google Scholar
[6]
K. Vijayakumar, G.K. Ramaiah, On the use of a coordinate transformation for analysis of axisymmetric vibration of polar orthotropic annular plates, J. Sound Vibr. 24 (1972), 165-175.
DOI: 10.1016/0022-460x(72)90946-7
Google Scholar
[7]
G.K. Ramaiah, K. Vijayakumar, Natural frequencies of polar orthotropic annular plates, J. Sound Vibr. 26 (1973), 517-531.
DOI: 10.1016/s0022-460x(73)80217-2
Google Scholar
[8]
G.K. Ramaiah, K. Vijayakumar, Estimation of higher natural frequencies of polar orthotropic annular plates, J. Sound Vibr. 32 (1974), 265-278.
DOI: 10.1016/s0022-460x(74)80169-0
Google Scholar
[9]
D.G. Gorman, Natural frequencies of polar orthotropic uniform annular plates, 80 (1982), 145154.
DOI: 10.1016/0022-460x(82)90397-2
Google Scholar
[10]
Y. Narita, Natural frequencies of completely free annular and circular plates having polar orthotropy. J. Sound Vibr., 92 (1984), 33-38.
DOI: 10.1016/0022-460x(84)90371-7
Google Scholar
[11]
Y. Narita, Free vibration of continuous polar orthotropic annular and circular plates. J. Sound Vibr., 93 (1984), 503-511.
DOI: 10.1016/0022-460x(84)90419-x
Google Scholar
[12]
Z.H. Zhou, K.W. Wong, X.S. Xu, A.Y.T. Leung, Natural vibration of circular and annular thin plates by Hamiltonian approach, J. Sound Vibr., 330 (2011), 1005-1017.
DOI: 10.1016/j.jsv.2010.09.015
Google Scholar
[13]
K. Mercan, H. Ersoy, O. Civalek, Free vibration of annular plates by discrete singular convolution and differential quadrature methods, J. Applied Compt. Mech. 2 (2016), 128-133.
DOI: 10.1016/j.compstruct.2016.11.051
Google Scholar
[14]
Y. Janiman, B. Singh, Free vibration of circular annular plate with different boundary conditions, Vibroengineering PROCEDIA, 29 (2019), 82-86.
DOI: 10.21595/vp.2019.21116
Google Scholar
[15]
Y.Narita, P. Robinson, Maximizing the fundamental frequency of laminated cylindrical panels using layerwise optimization, Int. J. Mech. Sci., 48 (2006), 1516-1524.
DOI: 10.1016/j.ijmecsci.2006.06.008
Google Scholar
[16]
D. Narita, Y. Narita, Accurate results for free vibration of doubly curved shallow shells of rectangular planform (Part 1), EPI Int. J. Eng., 4 (2021), 29-36.
DOI: 10.25042/epi-ije.022021.05
Google Scholar