[1]
P.W. Whaley, Prediction of the change in natural frequency of a cantilevered flat plate with added lumped mass, Journal of Sound and Vibration, Vol.69, (1980), pp.519-529.
DOI: 10.1016/0022-460x(80)90622-7
Google Scholar
[2]
P. A. A. Laura, R.H. Gutierrez, Transverse vibrations of thin, elastic plates with concentrated masses and internal elastic supports, Journal of Sound and Vibration, Vol.75, (1981), pp.135-143.
DOI: 10.1016/0022-460x(81)90241-8
Google Scholar
[3]
J.W. Nicholson, L.A. Bergman, Vibration of thick plates carrying concentrated masses, Journal of Sound and Vibration, Vol.3, (1985), pp.357-369.
DOI: 10.1016/0022-460x(85)90428-6
Google Scholar
[4]
M. Mukhopadhyay, Vibration analysis of elastically restrained rectangular plates with concentrated mass, Journal of Sound and Vibration, Vol.113, (1987), pp.547-558.
DOI: 10.1016/s0022-460x(87)80136-0
Google Scholar
[5]
M.S. Ingber, A.L. Pate, J.M. Salazar, Vibration of a clamped plate with concentrated mass and spring attachments, Journal of Sound and Vibration, Vol.153, (1992), pp.143-166.
DOI: 10.1016/0022-460x(92)90633-9
Google Scholar
[6]
K.H. Low, G.B. Chai, T.M. Lim, S.C. Sue, Comparisons of experimental and theoretical frequencies for rectangular plates with various boundary conditions and added masses, International Journal of Mechanical Sciences, Vol.40, (1998), pp.1119-1131.
DOI: 10.1016/s0020-7403(98)00013-7
Google Scholar
[7]
K.H Low, An improved model for the frequency estimate of mass-loaded plates by a combined use of equivalent center mass and stiffness factors, International Journal of Mechanical Sciences, Vol.43, (2001), pp.581-594.
DOI: 10.1016/s0020-7403(99)00116-2
Google Scholar
[8]
R.R. Reynolds, B.D. Provencher, S.A. Shesterikov, The high frequency, transient response of a panel with attached masses, Journal of Sound and Vibration, Vol.266, (2003), pp.833-846.
DOI: 10.1016/s0022-460x(02)01449-9
Google Scholar
[9]
Q.S. Li, An exact approach for free vibration analysis of rectangular plates with line-concentrated mass and elastic line-support, International Journal of Mechanical Sciences, Vol.45, (2003), pp.669-685.
DOI: 10.1016/s0020-7403(03)00110-3
Google Scholar
[10]
T. Kocat.urka, S. Sezerb, C. Demirb, Determination of the steady state response of viscoelastically point-supported rectangular specially orthotropic plates with added concentrated masses, Journal of Sound and Vibration, Vol.278, (2004), p.789–806.
DOI: 10.1016/j.jsv.2003.10.059
Google Scholar
[11]
M. Amabili, M. Pellegrini, F. Righi, F. Vinci, Effect of concentrated masses with rotary inertia on vibrations of rectangular plates, Journal of Sound and Vibration, Vol.295, (2006), pp.1-12.
DOI: 10.1016/j.jsv.2005.11.035
Google Scholar
[12]
D.V. Bambill, D.H. Felix, C.A. Rossit, Natural frequencies of thin, rectangular plates with holes or orthotropic "patches" carrying an elastically mounted mass, International Journal of Solids and Structures, Vol.43, (2006), pp.4116-4135.
DOI: 10.1016/j.ijsolstr.2005.03.051
Google Scholar
[13]
P.M. Ciancioa, C.A. Rossitb and P.A.A. Laura, Approximate study of the free vibrations of a cantilever anisotropic plate carrying a concentrated mass, Journal of Sound and Vibration, Vol. 302, (2007), p.621–628.
DOI: 10.1016/j.jsv.2006.11.027
Google Scholar
[14]
S.D. Yu, Free and forced flexural vibration analysis of cantilever plates with attached point mass, Journal of Sound and Vibration, 321, (2009), p.270–285.
DOI: 10.1016/j.jsv.2008.09.042
Google Scholar
[15]
J.R. Vinson and R.L. Sierakowski, The Behavior of Structures Composed of Composite Materials, Martinus Nijhoff, Dordrecht, (1986)
Google Scholar
[16]
Y. Narita and J.M. Hodgkinson, Layerwise optimization for maximizing the fundamental frequencies of point-supported rectangular laminated composite plates, Composite Structures, Vol.69, (2005), pp.127-135.
DOI: 10.1016/j.compstruct.2004.05.021
Google Scholar
[17]
Y. Narita, Combinations for the free-vibration behaviors of anisotropic rectangular plates under general edge conditions, Trans. ASME Journal Applied Mechanics, Vol.67, (2000), pp.568-573.
DOI: 10.1115/1.1311959
Google Scholar