Modelling Creep Controlled by the Glide of Jogged Screw Dislocations in TiAl and Ti-Based Alloys

Article Preview

Abstract:

Crept microstructures in g-TiAl based alloys reveal a preponderance of 1/2[110]-type jogged-screw dislocations, suggesting that the rate of creep deformation is controlled by the glide of such dislocations. A creep model based on these microstructural observations has been recently developed. This leads to an excellent prediction of creep rates and stress exponents. In this paper, the framework of this model including the verification and validation of the functional dependencies of various microstructural model parameters is reviewed. It has also been observed that creep phenomenology is extremely sensitive to microstructure – fully lamellar g-based alloys exhibit lower creep rates and higher stress exponents even though the deformation microstructure is similar to that in equiaxed alloys. The modifications made to the model that account for the constrained nature of deformation in lamellar alloys are discussed. The applicability of the model is explored in materials systems, including a-Ti and a+b Ti alloys where similar creep exponents and deformation structures have been observed. Finally, the relevance, applicability and shortcomings of the model are critically analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 233-234)

Pages:

127-148

Citation:

Online since:

December 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.B. Viswanathan, S. Karthikeyan, R.W. Hayes and M.J. Mills: Acta Mater. Vol. 50 (2002), p.4965.

Google Scholar

[2] G.B. Viswanathan, V.K. Vasudevan and M.J. Mills: Acta Mater. Vol. 47 (1999), p.1399.

Google Scholar

[3] S. Karthikeyan, G.B. Viswanathan, Y. -W. Kim, V.K. Vasudevan and M.J. Mills, in 9th International Conference on Creep and Fracture of Engineering Materials and Structures, (2001), p.55.

Google Scholar

[4] S. Karthikeyan, G.B. Viswanathan, Y. -W. Kim, V.K. Vasudevan and M.J. Mills, in ISSI-3, The Third International Conference on Structural Intermetallics, ed. K.J. Hemker, TMS, (2001), p.717.

Google Scholar

[5] S. Karthikeyan, G.B. Viswanathan, Y. -W. Kim, P.I. Gouma, V.K. Vasudevan and M.J. Mills: Mat. Sci. Eng. A Vol. A329 - 331 (2002), p.621.

Google Scholar

[6] S. Karthikeyan, G.B. Viswanathan and M.J. Mills: Acta Mater. Vol. 52 (2004), p.2577.

Google Scholar

[7] S. Karthikeyan: Ph.D. Thesis, Materials Science and Engineering, The Ohio State University, Columbus, Ohio, (2003).

Google Scholar

[8] G.B. Viswanathan, S. Karthikeyan, R.W. Hayes and M.J. Mills: Metall. Mater. Trans. A Vol. 33A (2002), p.329.

Google Scholar

[9] R.L. Coble: J. Appl. Phys. Vol. 34 (1963), p.1679.

Google Scholar

[10] F.R.N. Nabarro, in Rept. Conf. Strength of Solids, ed. Univ. Bristol, (1948), p.75.

Google Scholar

[11] C. Herring: J. Appl. Phys. Vol. 21 (1950), p.437.

Google Scholar

[12] J. Harper and J.E. Dorn: Acta Metall. Vol. 5 (1957), p.654.

Google Scholar

[13] J. Weertman: Trans. AIME Vol. 218 (1960), p.207.

Google Scholar

[14] F.R.N. Nabarro: Phil. Mag. Vol. 16 (1967), p.231.

Google Scholar

[15] J.R. Weertman: J. Appl. Phys. Vol. 28 (1957), p.1185.

Google Scholar

[16] J.R. Weertman: J. Appl. Phys. Vol. 26 (1955), p.1213.

Google Scholar

[17] W.D. Nix and B. Ilschner, in 5th Int. Conf. Strength of Metals and Alloys, ed. P. Haasen, V. Gerold and G. Kostorz, Pergamon Press, Oxford, (1979), p.1503.

Google Scholar

[18] S. Karthikeyan, J. Moon, G.B. Viswanathan and M.J. Mills, in Mechanical Properties Derived from Nanostructuring Materials, Materials Research Society, (2003), p.261.

Google Scholar

[19] G.B. Viswanathan: Ph. D. Thesis, Materials Science and Engineering, University of Cincinnati, Cincinnati, OH, (1997).

Google Scholar

[20] R.W. Hayes, G.B. Viswanathan and M.J. Mills: Acta Mater. Vol. 50 (2002), p.4953.

Google Scholar

[21] J. Beddoes, W. Wallace and L. Zhao: Int. Mater. Rev. Vol. 40 (1995), p.197.

Google Scholar

[22] J.N. Wang and T.G. Nieh: Acta Mater. Vol. 46 (1998), p.1887.

Google Scholar

[23] T.A. Parthasarathy, M.G. Mendiratta and D.M. Dimiduk: Scr. Mat. Vol. 37 (1997), p.315.

Google Scholar

[24] W. Sprengel, H. Nakajima and H. Oikawa: Mat. Sci. Eng. A Vol. A213 (1996), p.45.

Google Scholar

[25] B. Viguier, K.J. Hemker, J. Bonneville, F. Louchet and J.L. Martin: Phil. Mag. A Vol. 71 (1995), p.1295.

Google Scholar

[26] Y. Ishikawa, T. Kiyokawa and H. Oikawa: Mater. Trans. JIM Vol. 36 (1995), p.1041.

Google Scholar

[27] M. Lu and K.J. Hemker: Acta Mater. Vol. 45 (1997), p.3573.

Google Scholar

[28] C. Herzig, T. Przeorski and Y. Mishin: Intermetallics Vol. 7 (1999), p.389.

Google Scholar

[29] S. Kroll, H. Mehrer, N. Stolwijk, C. Herzig, R. Rosenkranz and G. Frommeyer: Zeitschrift fur Metallkunde Vol. 83 (1992), p.591.

Google Scholar

[30] J. Cadek: Creep in Metallic Materials (Elsevier, New York 1988).

Google Scholar

[31] S. Sriram, D.M. Dimiduk, P.M. Hazzledine and V.K. Vasudevan: Phil. Mag. A Vol. 76 (1997), p.956.

Google Scholar

[32] M.A. Morris and M. Leboeuf: Intermetallics Vol. 5 (1997), p.339.

Google Scholar

[33] E.A. Ott: Ph.D. Thesis, Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, (1998).

Google Scholar

[34] J.D.H. Paul, U. Sparka and F. Appel, in ISSI-3, The Third International Conference on Structural Intermetallics, ed. K.J. Hemker, TMS, (2001), p.403.

Google Scholar

[35] N.F. Mott, in Creep and Fracture of Metals at High Temperatures, Proc. NPL Symp., ed. HMSO, London, (1956), p.21.

Google Scholar

[36] P.B. Hirsch and D.H. Warrington: Phil. Mag. Vol. 6 (1961), p.735.

Google Scholar

[37] L. Raymond and J.E. Dorn: Trans. AIME Vol. 230 (1964), p.560.

Google Scholar

[38] C.R. Barrett and W.D. Nix: Acta Metall. Vol. 13 (1965), p.1247.

Google Scholar

[39] J. Weertman: Acta Metall. Vol. 15 (1967), p.1081.

Google Scholar

[40] J. Weertman: Trans. ASME Vol. 61 (1968), p.681.

Google Scholar

[41] J.P. Hirth and J. Lothe: Theory of Dislocations (John Wiley and Sons, Inc., New York 1982).

Google Scholar

[42] D. Rosenthal: Trans. ASME Vol. 68 (1946), p.849.

Google Scholar

[43] J.N. Wang, A.J. Schwarz, T.G. Nieh and H. Clemens: Mat. Sci. Eng. A Vol. 206A (1996), p.63.

Google Scholar

[44] W.J. Zhang, S. Spigarelli, E. Cerri, E. Evangelista and L. Francesconi: Mat. Sci. Eng. A Vol. A211 (1996), p.15.

Google Scholar

[45] F. Louchet and B. Viguier: Phil. Mag. A Vol. A 80 (2000), p.765.

Google Scholar

[46] L.M. Hsiung, T.G. Nieh, B.W. Choi and J. Wadsworth: Mat. Sci. Eng. A Vol. A329/331 (2002), p.637.

Google Scholar

[47] L.M. Hsiung and T.G. Nieh: Intermetallics Vol. 7 (1999), p.821.

Google Scholar

[48] L. Zhao and K. Tangri: Phil. Mag. A Vol. 65 (1992), p.1065.

Google Scholar

[49] E. Furubayashi: J. Phys. Soc. Jap. Vol. 27 (1969), p.130.

Google Scholar

[50] M.J. Mills, J.M.K. Weizorek and H.L. Fraser, in Atomic Resolution Microscopy of Surfaces and Interfaces, Materials Research Society, (1997), p.131.

Google Scholar

[51] C.L. Fu and M.H. Yoo: Scr. Mat. Vol. 37 (1997), p.1453.

Google Scholar

[52] C.L. Fu and M.H. Yoo: Phil. Mag. Lett Vol. 62 (1990), p.159.

Google Scholar

[53] S.I. Rao, C. Woodward and P.M. Hazzledine, in Defect-Interface Interactions, Materials Research Society, (1994), p.285.

Google Scholar

[54] C. Woodward and S.I. Rao: Phil. Mag. Vol. 84 (2004), p.401.

Google Scholar

[55] S.I. Rao, in Multiscale Modelling of Materials, Materials Research Society, (1999), p.77.

Google Scholar

[56] S.I. Rao, in Second International Symposium on Gamma Titanium Aluminides (ISGTA), TMS, (1999), p.97.

Google Scholar

[57] R. Porizek, S. Znam, D. Nguyen-Manh, V. Vitek and D.G. Pettifor, in Defect Properties and Related Phenomena in Intermetallic Alloys, Materials Research Society, (2003), p.181.

Google Scholar

[58] J.P. Simmons, S.I. Rao and D.M. Dimiduk: Phil. Mag. Lett Vol. 77 (1998), p.327.

Google Scholar

[59] J.P. Simmons, M.J. Mills and S.I. Rao, in High-Temperature Ordered Intermetallic Alloys VI. Part I, Materials Research Society, (1995), p.137.

Google Scholar

[60] K.J. Hemker, B. Viguier and M.J. Mills: Mat. Sci. Eng. A Vol. A164 (1993), p.391.

Google Scholar

[61] B.A. Greenberg, V.I. Anisimov, Y.N. Gornostyrev and G.G. Taluts: Scr. Metall. Vol. 22 (1988), p.859.

Google Scholar

[62] V. Vitek: Crystal Lattice Defects Vol. 5 (1974), p.1.

Google Scholar

[63] S. Ikeno and E. Furubayashi: Phys. Stat. Sol. A Vol. 12 (1972), p.611.

Google Scholar

[64] S. Ikeno and E. Furubayashi: Phys. Stat. Sol. A Vol. 27 (1975), p.581.

Google Scholar

[65] A.J. Garret-Reed and G. Taylor: Phil. Mag. A Vol. 39 (1979), p.597.

Google Scholar

[66] J.R. Low, Jr. and A.M. Turkalo: Acta Metall. Vol. 10 (1962), p.215.

Google Scholar

[67] A. Gershick, D.G. Pettifor and V. Vitek: Phil. Mag. A Vol. 77 (1998), p.999.

Google Scholar

[68] B. Legrand: Phil. Mag. A Vol. 52(1) (1985), p.83.

Google Scholar

[69] S. Naka, A. Lasamonie, P. Costa and I.P. Kubin: Phil. Mag. A Vol. 57 (1988), p.717.

Google Scholar

[70] S. Suri, G.B. Viswanathan, T. Neeraj, D.H. Hou and M.J. Mills: Acta Mater. Vol. 47 (1999), p.1019.

Google Scholar

[71] U. Dahmen: Acta Metall. Vol. 22 (1974), p.1359.

Google Scholar

[72] J. Friedel: Phil. Mag. A Vol. 46 (1955), p.1169.

Google Scholar

[73] G.R. Love: Acta Metall. Vol. 12 (1964), p.731.

Google Scholar